Устройство и принцип действия камер сгорания

Основная камера — сгорание

Основная камера сгорания расположена в нижней части крышки и обеспечивает работу двигателя на генераторном газе со степенью сжатия 9 вместо 18 на жидком топливе.

Основные камеры сгорания ВРД размещаются обычно так, чтобы их внешний диаметр был равен наружному диаметру корпуса компрессора или турбины или несколько превышал его.

К основным камерам сгорания ВРД предъявляются следующие требования.

Каждая форкамера соединяется с основной камерой сгорания двумя отверстиями ( соплами) диаметром по 3 5 мм.

Основная система топливопитания предназначена для подачи топлива в основные камеры сгорания в течение всего времени работы двигателя.

ПВРД предъявляются те же требования, что и к основным камерам сгорания ВРД. Основнв отличие этих камер заключается в том, что коэффициент избытка воздуха в таких камерах близок к единице, вследствие чего объем камеры не делится на первичную и вторичную зоны.

Вместо бункера 8 может устанавливаться небольшая пусковая топка, служащая для разогрева основной камеры сгорания в период пуска и выполняющая функцию бункера накопления провала в период работы.

Крышка цилиндра двух.

Возникшее пламя с большей скоростью выбрасывается в виде факела через сопло дополнительной камеры в основную камеру сгорания. Факел пламени служит мощным многоочаговым источником воспламенения и турбулизации основной порции горючей смеси в надпоршневом пространстве, что обусловливает быстрое сгорание обедненных смесей.

При термическом зажигании газообразные продукты разложения перекиси, поступая из сравнительно малого объема предкамеры в основную камеру сгорания, выбрасывают из нее топливо, если оно там накопилось к моменту запуска.

При повороте коромысла открывается дополнительный клапан 12 форкамеры и затем ( почти одновременно) впускной клапан 7 основной камеры сгорания. Горючая смесь поступает в форкамеру из форка-мерной секции 4 карбюратора 5 по отдельному каналу 3 питания, выполненному во впускном трубопроводе и в головке цилиндров. При открытом дополнительном клапане 12 в форкамеру поступает обогащенная ( а 0 85 — — — н 0 90) горючая смесь, а в основную камеру и цилиндр двигателя ( при открытом впускном клапане 7) при движении поршня 2 вниз очень бедная ( а 1 8) горючая смесь.

Организация процесса горения топлива в форсажных камерах ТРД ( рис. 5.14 и 5.21) в сравнении с основными камерами сгорания имеет ряд особенностей.

Схема воздушно-камерного дизеля.

Воздушно-камерные дизели имеют разделенную камеру ( рис. 58), состоящую из воздушной камеры 2 в головке цилиндра и основной камеры сгорания 3 в надпор-шневом пространстве. Объем воздушной камеры у старых конструкций дизелей составляет около 70 %, а у новых — до 25 % объема пространства камеры сгорания. Камеры сообщаются между собой узкой горловиной. Форсунка 5 расположена вне воздушной камеры: струя топлива направляется к горловине, соединяющей обе камеры, и лишь частично попадает в воздушную камеру.

Цельнолитая вихревая камера представляет собой плоский цилиндр с горизонтально расположенной осью, имеет наклонное тангенциальное отверстие, связывающее вихревую камеру с основной камерой сгорания.

Камера — сгорание — двигатель

Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.

Камеры сгорания двигателей с подвесными клапанами по сравнению с камерами сгорания двигателей с боковыми клапанами и двигателей со смешанным расположением клапанов обладают рядом преимуществ. Эти камеры имеют компактную форму, благодаря чему их относительная поверхность, а следовательно, и потери на охлаждение получаются меньшими, чем в камерах с боковым и смешанным расположением клапанов. Благодаря меньшим сопротивлениям при всасывании ( отсутствие резких поворотов всасываемого потока и относительно слабые его удары о днище поршня, меньшие вихри и меньшие потери на трение смеси о стенки камеры) коэффициент наполнения r v двигателей с подвесными клапанами выше, чем двигателей с боковыми клапанами.

Камеры сгорания двигателей с подвесными клапанами допускают более высокие степени сжатия, что позволяет повысить литровую мощность и экономичность двигателя. Двигатели западноевропейских автомобилей, работающие на бензинах с октановым числом 75 — 85, характеризуются менее высокими степенями сжатия ( 6 5 — 8 5), чем американские двигатели.

Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.

Камеры сгорания двигателей с подвесными клапанами допускают более высокие степени сжатия, что позволяет повысить литровую мощность и экономичность двигателя.

Камера сгорания двигателя имеет наружное охлаждение горючим. Система охлаждения устроена по принципу двух ходов, в соответствии с которым охладитель проходит по одной трубке и возвращается обратно по соседней. Существуют конструкции, в которых используется пористо-регенеративная система, включающая в себя пористую вставку, расположенную от форсуночной головки до линии несколько ниже критического сечения, и трубки регеративного охлаждения.

Камера сгорания двигателя короткая, кольцевого типа, спроектирована специально для работы при большом давлении газа. Она работает бездымно с высокой полнотой сгорания, что достигнуто с помощью хорошего перемешивания топлива и воздуха непосредственно за форсунками и применения завихрителя с увеличенным расходом воздуха через первичную зону. Кроме того, перед фронтовым устройством камеры установлен разделитель потока воздуха, гарантирующий распределение воздуха по наружному и внутреннему кольцевым каналам камеры.

Камера сгорания двигателя — кольцевая, с форсунками испарительного типа, бездымная. В задней части внутреннего корпуса расположен роликовый подшипник турбины высокого давления.

Камера сгорания двигателя — кольцевая, противоточная, с пневматическими форсунками, имеет высокую полноту сгорания в расчетной точке работы двигателя. Камера обеспечивает низкий уровень выделения загрязняющих веществ, работая на обедненной топливовоздушгюй смеси в первичной зоне.

Камера сгорания двигателя — кольцевого типа, очень короткая, с оригинальным смесеобразующим устройством. В этом устройстве топливо через 20 трубок подается в небольшие смесители вихревого типа, где оно предварительно смешивается с поступающим воздухом. Такая конструкция обеспечивает хорошее смешение и полное сгорание топлива на длине камеры менее 255 мм, причем в зоне длиной приблизительно 50 мм происходит смешение, а в остальной части — горение.

Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.

Камера сгорания двигателя кольцевого типа имеет внутреннее пленочное и внешнее конвективное охлаждение. Для получения расчетного поля температур на выходе из камеры применены высокоэффективный диффузор за компрессором и относительно большое число ( тридцать) топливных форсунок.

Конструкция камеры сгорания двигателя существенно влияет на ег о работу по циклу Дизеля — Отто на газе. Наилучшие результаты получаются у однокамерных дизелей, наихудшие-у двигателей с разделенной камерой сгорания и другими теплоаккумулирующими и вихревыми приспособлениями.

Охлаждение камер сгорания двигателей, особенно форсированных, как правило, выполняется жидкостным.

Отсек камер сгорания двигателя газовой турбины включает: сборник камеры сгорания; пламенные трубы; переходные патрубки в сборе; топливные форсунки; запальные свечи; трансформаторы запала; индикаторы пламени; пламеперебросные патрубки; различные элементы материального обеспечения и прокладки.

Назначение камер сгорания и основные требования к ним

Камеры
сгорания ГТД предназначаются для подвода
теплоты к рабочему телу в двигателе за
счет преобразования химической энергии
топлива, запасенного на борту летательного
аппарата, в тепловую при его сгорании
с участием кислорода, содержащегося в
воздухе. Двигатели для сверхзвуковых
самолетов имеют обычно две камеры
сгорания: основную
(перед турбиной) и форсажную (перед
соплом), включа­емую
для увеличения тяги.

Топливом
для современных авиационных ГТД служит
керосин. Существует много марок
авиационных керосинов, но все они,
являясь продуктами переработки нефти,
представляют собой смесь углеводородов,
в которой содержится 84…86 % (по массе)
углерода (С), 14…16 % водорода (Н) и очень
малое количество других веществ.

Разведанных
запасов нефти хватит, по ориентировочным
оценкам на 40…80 лет. Поэтому в настоящее
время ведутся интенсивные исследования
по применению в качестве топлива для
авиации так называемых криогенных
(сжиженных при низких температурах)
топлив 
жидкого метана (СН4),
сжиженного природного газа (СПГ),
состоящего примерно на 90 % из метана и
даже жидкого водорода (Н2).

Камера
сгорания 
один из важнейших элементов ГТД, от
со­вершенства
которого в значительной мере зависят
надежность дви­гателя
и его экономичность. Соответственно к
камерам сгорания предъявляются
нижеследующиеосновные
требования
.

1.Высокая полнота
сгорания топлива
.
Потери теплоты
в
процессе горения связаны, в основном,
с неполным сгоранием. Теплоотдача через
стенки камеры сгорания во внешнюю по
отношению к двигателю среду обычно
пренебрежимо мала.

2. Возможно
малые

потери полного давления
.
Снижение полного
давления
потока, проходящего через камеру, из-за
наличия гидрав­лических
и других потерь отрицательно
сказывается как на тяге, так и на
экономичности дви­гателя.

3.Минимально
возможные габариты

при данном количестве выделяемой при
сгорании топлива теплоты, поскольку
они связаны с общими габаритами и массой
двигателя.

4.Устойчивый
процесс горения

в широком диапазоне режимов
работы и условий полета. Иначе возможно
самовыключение
двигателя или его форсажной камеры
из-за «срыва»
пламени.
Недопу­стимым
является также наличие сильных колебаний
давления в ка­мерах
сгорания, которые могут быть вызваны
воз­никновением
так называемого вибрационного горения.

5.Обеспечение
необходимого и стабильного поля
температур
на входе
в турбину.
Нестабильность и окружная неравномерность
темпера­турного поля отрицательно
сказываются на тепловом режиме соп­ловых
и рабочих лопаток турбины и, следовательно,
на их надеж­ности
и ресурсе. Радиальная неравномерность
поля температур вво­дится
преднамеренно с целью снижения температуры
наи­более
нагруженных сечений рабочих лопаток
турбины.

6.Низкий уровень
выброса твердых частиц
(сажи)
и вредных (токсичных) веществ

в продуктах сгорания. «Дым­ление»
двигателей приводит к загрязнению
атмосферы, к наруше­нию
нормального теплового режима деталей
газового тракта (при отложении
сажи на их поверхности) и т. д.

7. Надежный
запуск («розжиг») на земле и в воздухе
.
Важ­ность
этого требования очевидна. Основные
камеры сгорания ТРД должны
обеспечивать надежное воспламенение
топлива в них на высотах
по крайней мере до 6 …10 км, а форсажные
камеры — до высот,
близких к потолку самолета.

Кроме
того, к камерам сгорания предъявляются
общие для всех
элементов двигателя требования высокой
надежности, большо­го
ресурса, простоты изготовления,
эксплуатационной
и ремонтной технологичности (т. е.
простоты контроля, малого объема
регламентных работ и т.д.).

Ниже
будут рассмотрены схемы, параметры,
особенности организации процесса
горения и другие вопросы для камер
сгорания ГТД, работающих на керосине.
Камеры сгорания, предназначенные для
работы на криогенных топливах, как
показали уже проведенные экспериментальные
исследования, могут быть выполнены
аналогичным образом.

Виды конструкций камер сгорания:

  1. Камера сгорания с прямым впрыском 
  2. Камера сгорания с непрямым впрыском.

Камера сгорания с прямым впрыском

В камере сгорания с прямым впрыском топливо впрыскивается непосредственно у закрытого конца цилиндра. Давайте рассмотрим подробнее схему камеры сгорания открытого типа.

Камеры сгорания, как правило использовались на тяжелых автомобилях, но после модификации стали использоваться на автомобилях с 2-х литровым двигателем. Как вы видите в поршне имеется глубокая выемка в которой находится воздух, в тот момент когда поршень находится в ВМТ (верхней мертвой точке) в непосредственной близости к головке цилиндров. Поэтому, чтобы получить требуемую степень сжатия, необходимо использование верхнеклапанного механизма. Для головок цилиндров в головке поршня имеются неглубокие выемки для обеспечения необходимых зазоров. При неправильной регулировке клапанов, последние будут бить по поршню. Для подачи тонко распыленного топлива с давлением 175 бар с струю воздуха применяется форсунка, затем топливовоздушная смесь поступает в выемку поршня (камеру сгорания). Завихрение в этом случае образуется в вертикальной и горизонтальной плоскостях.

При подъеме поршня воздух заходит в выемку и перемещается примерно так, как изображено на рисунке. Когда поршень находится в ВМТ, это движение еще больше ускоряется благодаря завихрению поршня между поршнем и головкой. Горизонтальное или вращающееся завихрение может быть получено путем использования завихрителя на впускном клапане.

Комбинация двух вихревых потоков создает «круговорот» воздуха в выемке и обеспечивает необходимую подачу кислорода в область горения.

Камера сгорания с непрямым впрыском

При непрямом впрыске может впрыск более равномерный, за счет этого необходимо меньшее давление впрыска. Непрямой впрыск обеспечивает работу двигателя в большом диапазоне оборотов.

Фирма Ricardo Comet сконструировала большинство камер сгорания с непрямым впрыском. В камерах непрямого впрыска имеется вихрекамера, которая соединяется каналом с главной камерой. Благодаря этому конструкция позволяет работать с более высокими температурами.

При такте сжатия нагнетание воздуха происходит через канал вихрекамер. В быстро движимую массу воздуха происходит впрыск топлива, после чего оно распыляется на мельчайшие частички. После горения в вихревой камере уже горящее топливо с несгоревшим топливом поступает в основную камеру сгорания, которая находится в днище поршня. При увеличении времени впрыска для поддержания необходимой мощности двигателя, основная часть топлива, впрыскиваемая уже в конце периода впрыска, тщательно смешивается с воздухом в основной камере и уже потом загорается. Благодаря этому период горения может продолжаться в течении длительного времени до тех пор, пока топливу не будет хватать кислорода для горения. С этого момента начнет появляться черный смог. Он показывает максимум топлива, которое может быть впрыснуто для работы двигателя с максимальной мощностью и без потери экономичности.

Определение детонационной стойкости бензина

Детонационная стойкость бензина выражается в его октановом числе.

Октановое число бензина указывает на то, что данный вид топлива обладает такой же детонационной стойкостью, что и эталонная сравнительная смесь углеводородов — изооктана и нормального гептана. Так как изооктан имеет октановое число 100, а нормальный гептан — октановое число 0, то октановое число 80 означает, что детонационная стойкость бензина равна детонационной стойкости смеси из 80% (объемных частей) изооктана и 20% (объемных частей) нормального гептана. Детонационная стойкость растет с увеличением октанового числа.

Определение октанового числа выполняется на соответствующем испытательном стенде с использованием эталонного двигателя для оценки детонационной стойкости различных видов топлива. Эталонным в данном случае считается одноцилиндровый четырехтактный бензоиновый двигатель с термосифонной системой жидкостного охлаждения, в которой отсутствует помпа, а охлаждающая жидкость испаряется, и пар низкого давления конденсируется в радиаторе, а затем в виде конденсата возвращается в рубашку охлаждения. Степень сжатия двигателя во время испытаний может изменяться в границах между 4 и 18.

Существует два стандартизированных метода испытаний: исследовательский метод и моторный метод. Соответственно, результатами являются исследовательское октановое число бензина (ROZ) и моторное октановое число бензина (MOZ). Различия основных параметров обоих методов указаны в таблице.

Таблица. Различия параметров исследовательского и моторного методов

В моторном методе смесь воздуха и бензина нагревается позади карбюратора, а в исследовательском методе — воздух нагревается перед карбюратором.

Эталонный двигатель запускается и соединяется с большим электрическим генератором, в котором крутящий момент от эталонного двигателя возбуждает электрический ток, создающий тормозной момент. Измерение октанового числа всегда проводится в режиме сильной детонации при сгорании рабочей смеси. При этом коэффициент избытка воздуха регулируется так, чтобы получить детонацию максимальной интенсивности. Индуктивный датчик и электронный усилитель сигналов замеряют уровень детонации и выводят показания на дисплей специального прибора — детонометра. Компрессия двигателя настраивается таким образом, чтобы показания детонометра исследуемого бензина находились в середине шкалы прибора. Затем в систему питания вводятся две сравнительные смеси, чьи октановые числа различаются лишь на две единицы. Одна сравнительная смесь должна вызывать более сильную, а вторая более слабую детонацию, чем бензин. Посредством линейной интерполяции определяется и округляется до десятых долей октановое число бензина.

Один и тот же бензин, испытанный по моторному методу, имеет меньшее октановое число, чем выявленное по исследовательскому методу. Октановое число, определяемое по моторному методу, в современном бензине меньше примерно на 10 единиц, чем октановое число, определяемое по исследовательскому методу. Данная разница обусловлена тем, что соотношение олефинов и ароматических углеводородов в двух методах испытаний отличаются. На сегодняшний день исследовательское октановое число в бензине равно приблизительно 92, а в бензине высшего качества — 95 единиц. Октановое число, определяемое по исследовательскому методу, указывает на то, как ведет себя топливо при ускорении (детонация при разгоне).

Октановое число, определяемое по моторному методу, наоборот, указывает на поведение при большой нагрузке (детонация при высокой частоте вращения коленчатого вала).

Наряду с исследовательским и моторым октановыми числами существует также октановое число, определяемое по дорожному методу (SOZ). Оно определяется методом дорожных испытания транспортного средства согласно «модифицированному дорожному методу». В прогретый двигатель подаются различные сравнительные смеси из изооктана и нормального гептана. Автомобиль сначала ускоряется до максимальной скорости на прямой передаче, позволяющей плавное движение без рывков. Угол опережения зажигания регулируется до тех пор, пока не исчезнет детонация. В результате данные испытаний образуют базовую кривую, отображенную на рисунке.

Затем по тому же методу определяется установка зажигания, при которой начинается детонация, для исследуемого бензина. По базовой кривой определяется октановое число бензина по дорожному методу. Эта величина в различных двигателях будет иметь различные значения для одного и того же бензина.

При з.Г 1,0.

.8.85. Выбросы окисиуглерода определяются по эмпирическойформуле, объем, %:

,

гдеf– доля воздуха, участвующего в горении;примем f=0,5; Gв.з.г.– воздух, проходящийчерез зону горения; C,b,c– константы; примем C=20, b=1,0,

c=0,009.

8.9.Особенности расчета трубчато-кольцевыхкамер сгорания

Расчеттрубчато-кольцевых КС проходит в томже порядке, что и кольцевых, некоторыеособенности возникают в связи с тем,что проводится расчет отдельной жаровойтрубы.

В начале необходимоопределить количество жаровых труб:

nж– количество жаровых труб, гдеtж– шаг расположения жаровыхтруб, принимается tж= 1,1Нк;dср– средний диаметр камеры (расположенияЖТ), определяется по п.п 8.4.2;Нк——-по п.п 8.4.3

8.9.1. Суммарнаяплощадь миделевого сечения жаровыхтруб:

,

где kопт= 0,8; Fm– определяется по п. 7.4.4.

8.9.2. Диаметротдельной жаровой трубы:

,

.8.9.3. Длину жаровойтрубы определяют из условия обеспечениятребуемой неравномерности температурногополя :

,

где = 0,25 0,3; А= 0,07 – коэффициент пропорциональности.

8.9.4.Суммарная эффективная площадь отверстийв стенке жаровой трубы, м2,определяетсяпо величинам площади миделевого сечениякорпуса камеры Fm иотносительному падению давления нажаровой трубе Рж/:

.

8.9.5. Площадьфронтового устройства

Fфр= (0,1 0,3)Fо.

8.9.6. Площадьотверстий подвода вторичного воздухав зоне горения:

Fо.з.г= (0,3 0,5)Fо.

8.9.7. Площадьотверстий подвода охлаждающего воздуха:

Fохл= (0,1 0,3)Fо.

.8.9.8. Площадьотверстий зоны смешения:

Fз.с=Fж– Fо.з.г– Fохл– Fфр.

Остальные параметрыопределяются так же, как и для кольцевойкамеры сгорания.

8.9.11. Требуемыйдиаметр радиальных отверстий зоныгорения, м:

,?

где– отношение динамических напоров струии потока (2030);

Fо.з.г=Fо;– относительная глубина проникновенияструи.

8.9.12. Действительныйдиаметр отверстий зоны горения, м:

.

где о= 0,7 –коэффициент расхода в отверстиях стенокжаровой трубы. Рекомендуетсяdо.з.г=0,012 0,016 м. В случае если диаметр отверстийбольше 0,02 м,то их выполняют овальными или располагаютв несколько рядов.

8.9.13. Общее количествоотверстий подвода радиальных струйвоздуха в зоне горения:

.

8.9.14. Шаг междуотверстиями по наружному и внутреннемудиаметрам, м:

(.t>2,d.)

8.9.15. Количествоотверстий по наружному диаметру жаровойтрубы:

, .

8.9.16. Количествоотверстий в зоне смешения определяют,задаваясь диаметром отверстия (можнопринять dо.з.с=dо.з.г)

,

где Fо.з.с=Fo.

8.9.17. Количествоотверстий по наружному диаметру в зонесмешения определяют также, задаваясьшагом tо:

; .

8.9.18. Количествопоясов подвода воздуха для охлаждениястенок жаровой трубы рассчитываетсяпо известной суммарной площади подводаохлаждающего воздуха Fохли размерам щелей.

Располагаемуюплощадь одного пояса подвода охлаждающеговоздуха для кольцевой камеры сгорания,м2,можно определить:

.неоходимоубрать Dжвн

При щелевом подводеохлаждающего воздуха hs– высота щели, меняется обычно в пределах0,001 0,002 м. Количество поясов охлажденияжаровой трубы, м2:

,

где Fохл= Fo.

8.9.19.Приближеннаяоценка полноты сгорания возможна cпомощью параметра форсировки kv:

,

где,Vж =dсрHжLж– объем жаровой трубы, м3

8.9.20.Границуустойчивого горения в КС по «бедному»составу смеси определяют по известномукритерию срыва пламени kср

kср=;

где Gвзг= Fо.з.гG–расход воздуха через зону горения, кг/с;

– объем первичной зоны, отвечающей застабилизацию пламени, м3.

По значению сропределяют предельное значениекоэффициента избытка воздуха в первичнойзоне, обеспечивающее устойчивое горение.

8.9.21. Объемнаятеплонапряженность КС, Дж/чм3Па:

.

Для современныхкамер сгорания ГТД: Qv= (1,2 6,5)106Дж/чм3Па.

8.9.22.Выбросы окислов азота NOxопределяют по эмпирической зависимости,объем,%:

,

где– время пребывания смеси в зоне горения,с;

з.г =0,3к– коэффициентизбытка воздуха в первичной зоне и общийдля камеры соответственно.

Эволюция дизайна в современных двигателях

Современная (2007 г.) неактивная камера сгорания Hemi

Камера сгорания текущего производства Chrysler «Hemi»

В современную эмиссионную эпоху полукамеры начали исчезать из-за постоянного развития. Полусферическая камера сгорания — самая простая и легкая конструкция. Более века он служил базовой конструкцией в двигателях внутреннего сгорания, на основе которой возникло множество других усовершенствований и инженерных разработок. По мере того, как инженерия, связанная с новыми двигателями, улучшалась и развивалась, настоящая полусферическая камера трансформировалась и превратилась в более сложные и сложные конструкции, которые предназначены для извлечения большей мощности с меньшими выбросами при любом данном событии сгорания.

Во многих современных двигателях используются активные камеры сгорания, предназначенные для переворачивания и завихрения топливно-воздушной смеси внутри камеры для наиболее эффективного сгорания. Эти активные камеры обычно выглядят как фасоль или две слитые небольшие области, окруженные плоскими областями гашения над поршнями.

Классификация камер сгорания ГТУ, основные требования к ним

Камера сгорания(КС) – один из самых ответственных и теплонапряженных узлов ГТУ.

В КС совершается процесс подвода тепла к рабочему телу в результате протекания реакции горения топливного газа.

Классификация:

По назначению: основные, резервные, промежуточного подогрева

По принципу действия: переодического и неприрывного действия

По движению рабочего тела: прямоточные и противоточные

По компановки: выносные и встроенные

Конструктивные особенности корпуса и жаровой трубы: трубчатые, кольцевые, трубчато-кольцевые

Требования

· Высокая устойчивость горения во всем диапазоне эксплуатационных режимов работы двигателя без срывов, опасных пульсаций и затухания пламени

· Максимально возможная полнота сгорания (экономичность процесса сгорания)

· Малые габаритные размеры и небольшой вес

· Оптимальный закон распределения температуры газов на выходе из КС во избежание местных перегревов и повреждений сопел и лопаток.

Камера сгорания ГТУ (КС) –

это устройство, предназначенное для сжигания топлива и повышения энергии рабочего тела с целью использования ее в проточной части турбины.


На рис 4.1 приведена схема камеры сгорания ГТУ. Поток воздуха после компрессора, поступающий в КС, разделяется на первичный воздух GВ1 и вторичный – GВ2. Первичный воздух, подаваемый в количестве не менее стехиометрического, служит для полного сгорания топлива, а вторичный – для снижения температуры про­дуктов сгорания до требуемого уровня. Весь объем камеры сгорания делится на зоны горения и смешения. Рис. 4.1 Конструкция камеры сгорания. Воздухонаправляющее устройство (регистр) I служит для распределения и турбулизации первичного воздуха с целью улучше­ния смесеобразования для создания условий устойчивого процесса горения. Запальное устройство 2 служит для зажигания топлива в ка­мере сгорания в момент пуска. Горелочное устройство 3 предназначено для подачи топлива в КС и равномерного распределения по объему зоны горения. Пламенная (жаровая) труба 4 служит для ограничения огне­вого пространства и восприятия тепловых нагрузок. Силовой корпус 5 воспринимает нагрузки внутреннего давле­ния в камере сгорания. Смесители 6 перемешивают вторичный воздух с продуктами сго­рания с целью получения на выходе заданного температурного по­ля. Устойчивое горение топлива в КС обеспечивается следующими факторами: 1) подачей воздуха в количестве, необходимом для создания смеси нужного состава; 2) созданием нужного температурного режима; 3) наличием зоны стабилизации фронта пла­мени. Для обеспечения необходимого уровня температур и поля скоростей организуется зона обратных токов. 4.2.1. Требования к камерам сгорания и их характеристики Камеры сгорания ГТУ работают в широком диапазоне нагрузок. Они должны иметь малые габариты, массу, быть работоспособным при сжигании различных видов топлива. Кроме того, КС должны обеспечить допустимый уровень вредных выбросов с продуктами сгорания (окислов азота, серы). Особые требования к КС предъяв­лялся с точки зрения эксплуатационной надежности, так как они находятся в тяжелых температурных условиях. Кроме того, камеры сгорания должны иметь: высокий коэффициент полноты сгорания; малые потери давления; малые габариты, т.е. большую теплонапряженность; заданное поле температур; быстрый и надежный пуск; достаточно большой ресурс; достаточное удобство монтажа и профилактического обслуживания.

Снижение выбросов экологически вредных веществ в выхлопных газах гту

Размер — камера — сгорание

Система питания дизельного двигателя- Устройство и неисправности

Размеры камеры сгорания должны быть таковы, чтобы смешение и химические реакции успели закончиться до входа в сопло двигателя. Необходимые размеры камеры определяются величиной т — временем пребывания в камере топлива и его продуктов сгорания, которое находится по величине объема продуктов сгорания при температуре горения Т, давлении в двигателе р, объеме камера сгорания V, соотношению pV RT и количеству топлива, сгорающего в 1 сек. Однако нужно иметь в виду, что объем топлива по мере его сгорания в камере возрастает от очень малой величины ( объема жидкого тела) до значения VK, а время пребывания вычисляется по этому большему объему. При увеличении давления время пребывания в камере увеличивается, поэтому камера на том же расходе топлива может быть меньших размеров.  

Размеры камеры сгорания должны быть таковы, чтобы смешение и химические реакции успели закончиться до входа в сопло двигателя. Необходимые размеры камеры определяются величиной т времени пребывания в камере топлива и его продуктов сгорания. Время пребывания находится по величине объема продуктов сгорания при температуре горения Th, давлении в двигателе Р, объеме камеры сгорания V /, , соотношению PV — RT и количеству топлива, сгорающего в 1 сек.  

Распределение температур в пламенной трубе малой опытной камеры. а — при горелке с плоским регистром. б — при горелке с коническим регистром.  

С увеличением размеров камеры сгорания температура пламенной трубы возрастает. Однако имеющийся опытный материал, касающийся камер сгорания размером около одного метра и более, показывает, что температура пламенной трубы не достигает опасного уровня.  

При уменьшении размеров камеры сгорания уменьшаются разрежение, создаваемое горелкой в начале камеры, и количество рецирку-лирующих газов, а последнее при сжигании холодного газа с холодным воздухом ухудшает условия воспламенения и увеличивает отрыв факела от горелки. При очень малом сечении камеры и сжигании холодного газа с холодным воздухом для обеспечения устойчивого горения требуются специальные стабилизаторы воспламенения.  

С уменьшением размеров камеры сгорания увеличивается влияние нагрузки на полноту сгорания.  

При расчете размеров камер сгорания или при решении обратной задачи — выборе горелок для камер заданных размеров — руководствуются опытными данными работы сходственных установок и интуицией.  

Опережение зажигания зависит от размеров камеры сгорания, числа оборотов машины, нагрузки и должно быть определено экспериментально. Для транспортных двигателей, работающих с неременным числом оборотов, предусматривается автоматическое регулирование опережения зажигания.  

Скорость выделения тепла непосредственно влияет на размеры камеры сгорания, которые должны быть как можно меньше, чтобы снизить габариты и вес двигателя. Таким образом, задача состоит в достижении высокой интенсивности сгорания при минимальных турбулентности и потерях от неполноты сгорания. Мы располагаем очень малым количеством данных о влиянии различных топлив и их свойств на размеры пламени, хотя исследование этого вопроса ведется и в настоящее время.  

Погружная горелка.  

Поэтому он должен свестись к определению размеров камеры сгорания в зависимости от расхода горючей смеси. Чрезвычайно важным элементом расчета является определение длины камеры сгорания как непременное условие для полного сгорания топлива.  

Стволы детонационных установок различаются формой и размерами камеры сгорания, местом ввода горючей смеси и порошка, способом и местом инициирования горения горючей смеси, конструктивными особенностями системы охлаждения. Более перспективны конструкции стволов с переменным по длине сечением камеры сгорания.  

В работе [ 2J впервые рассмотрено влияние размеров камеры сгорания на среднюю скорость горения. Аналогичные, результаты сравнительно просто получить, используя метод Авери для определения повышения температуры, обусловленного поглощением энергии излучения.  

Если ширина зоны горения становится сравнимой с размерами камеры сгорания, то, несмотря на охват пламенем всего объема заряда, горение может затягиваться на значительную часть хода расширения, с соответствующим снижением экономичности цикла. Кроме того, вследствие непосредственного соприкосновения со стенками, резко возрастают скорости теплоотдачи и гибели активных частиц, что может не только снизить скорость горения, но и привести к полному его прекращению.  

Степень черноты канала и Пропускательная способность пристеночного слоя для экспоненциальной модели полосы с перекрытыми линиями.