Система питания

История [ править | править код ]

Появление и применение систем впрыска в авиации

Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств либо применять специально спроектированные карбюраторы. Система непосредственного впрыска авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционная система впрыска в силу конструкции работает в любом положении относительно направления силы тяжести.

Первый в России опытный мотор с системой впрыска был изготовлен в 1916 году Микулиным и Стечкиным.

К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz DB 601. Именно этими моторами объёмом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л. с., то DB 601 с впрыском позволял поднять мощность до 1100 л. c. и более. Позже в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — лицензионный авиадвигатель Pratt & Whitney Hornet, который на BMW производили с 1928 года. Он же устанавливался, к примеру, на транспортные самолеты Junkers Ju 52. Авиационные двигатели в Англии, США и СССР в те времена были исключительно карбюраторными. Японская же система впрыска на истребителях «Mitsubishi A6M Zero» требовала промывки после каждого полета и поэтому не пользовалась популярностью в войсках.

Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиационных двигателей со впрыском, работы по созданию отечественных систем непосредственного впрыска получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2. Мотор со впрыском АШ-82ФН оказался настолько удачным, что выпускался ещё долгие десятилетия, использовался на вертолете Ми-4 и самолетах Ил-14.

К концу войны довели до серии свой вариант впрыска и в США. Например, двигатели «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.

Начало реактивной эры привело к прекращению работ по системам впрыска. На тяжелых и скоростных самолетах применялись турбовинтовые и реактивные двигатели, а поршневые ставились лишь на тихоходные легкие маломаневренные самолеты и вертолеты, которые могли нормально работать и с карбюраторной системой питания.

Применение систем впрыска в автомобилестроении

Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного фирмой Goliath из Бремена. В 1954 году появилось купе Mercedes-Benz 300 SL («крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch . На рубеже 1950—1960-х годов над электронными системами впрыска топлива активно работали Chrysler и ГАЗ. Тем не менее, до эпохи появления дешёвых микропроцессоров и введения жёстких требований к уровню вредных выбросов автомобилей идея впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.

Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel 1967 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объёмом 5,4 л в карбюраторном варианте развивала 255 л. с., а в заказной версии Electrojector уже 290 л. с. Разгон до 100 км/ч у такого седана занимал менее 8 с.

К началу 2000-х годов системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.

Система питания инжекторного двигателя современного автомобиля — это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного — блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Праноедение

В классическом понимании праноедение сложно называть принципом питания, так как это по сути отказ от пищи. Это скорее способ духовного развития. Согласно древнеиндийскому учению, все живое окружает прана – это воплощение дыхания и жизни. Эта энергия повсюду: в космосе, на земле, в животных и нас самих. Праноеды питаются этой энергией, что позволяет им отказаться от привычной пищи и даже воды. Благодаря такой философии, организм полностью очищается и восстанавливается, сохраняя запасы энергии, которые затрачиваются на переваривание пищи. Это позволяет не только освободится от заболеваний, но и найти полную гармонию с собой и окружающим миром.

Состав и функции системы подачи топлива

  • транспортировка топлива, его фильтрация и создание давления в системе – выполняется механическими и гидравлическими устройствами;
  • расчет количества и момента впрыска топлива, а также распределение его по цилиндрам – осуществляется электронными устройствами.

ТНВД – для систем непосредственного впрыска (дизельных двигателей).

Топливные форсунки. Топливная система автомобиля

В состав топливной системы входят следующие элементы:

  • Бак – герметичная емкость для хранения топлива.
  • Трубопроводы (прямой и обратный) – трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
  • Фильтры (грубой и тонкой очистки) – выполняют очистку от механических загрязнений.
  • Регулятор давления – необходим для обеспечения заданного уровня давления.
  • Насос – как правило, погружной, приводимый в движение электродвигателем.

Назначение и общее устройство топливной системы

Топливная система автомобиля (или система подачи топлива) — система, предназначенная для подачи топлива (бензина или дизельного топлива) из топливного бака в двигатель (точнее – в карбюратор или форсунки). Также эта система обеспечивает хранение топлива и его очистку перед подачей в двигатель.

Независимо от типа, любая топливная система содержит несколько основных компонентов:

– Топливный бак; – Система топливопроводов; – Топливный насос; – Топливный фильтр (или фильтры); – Устройство образования топливно-воздушной смеси или устройства впрыска топлива в цилиндры.

Топливный бак. Это резервуар для хранения топлива. Бак современных автомобилей — это довольно сложная система, которая содержит несколько компонентов: непосредственно резервуар, горловина для заливки топлива, датчик уровня топлива, топливный насос (однако во многих системах насос устанавливается в моторном отсеке) и другие. С баком также сообщается система улавливания паров топлива, которая содержит сепаратор, топливопроводы, адсорбер и несколько клапанов.

Топливопроводы. Это трубки, которые осуществляют подачу топлива от одних компонентов к другим. Подача топлива из бака осуществляется подающим топливопроводом, а возврат излишков топлива из карбюратора, форсунок или ТНВД (в дизельном двигателе) производится через сливные трубопроводы.

Топливный насос. Это устройство, которое подает топливо из бака к двигателю. В системах впрыска топлива насос создает высокое давление. В дизельных моторах два насоса — низкого и высокого давления (подкачивающий насос может быть и в инжекторных двигателях). Сегодня чаще всего применяются электрические насосы, однако в дизелях используются традиционные механические плунжерные ТНВД.

Топливные фильтры. Обычно их два — грубой и тонкой очистки. Фильтр грубой очистки — это просто несколько тонких металлических сеточек, установленных в топливном баке. Фильтр тонкой очистки устроен более сложно, он устанавливается перед карбюратором, рампой или ТНВД. Фильтры обеспечивают очистку топлива от разнообразных загрязнений, пыли и посторонних твердых частиц.

Устройство образования топливно-воздушной смеси — это карбюратор, в который подается бензин и воздух, где они смешиваются и через дроссельную заслонку подаются во впускной коллектор двигателя. В инжекторных и дизельных двигателях воздух подается отдельным дроссельным узлом, а образование горючей смеси происходит непосредственно в цилиндре.

Устройства впрыска топлива. Это форсунки в дизельных и инжекторных бензиновых двигателях. Однако в дизельных моторах (а также и в инжекторах с непосредственным впрыском) форсунки установлены непосредственно в головках цилиндров, а в инжекторных моторах — во впускных коллекторах.

Также в топливную систему современных автомобилей входит блок управления, который осуществляет управление подачей топлива, образованием топливно-воздушной смеси и изменением режимов работы двигателя в зависимости от нагрузки и других условий. Блок управления работает на основе показаний от многочисленных датчиков, установленных в различных узлах двигателя и других систем автомобиля.

На сегодняшний день существует два основных типа топливных систем — бензиновых и дизельных двигателей. О каждой из них нужно рассказать более подробно.

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

Режимы работы системы питания

В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.

  1. Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
  2. Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
  3. Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
  4. Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
  5. Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).

Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме. » alt=»»>

Варианты системы питания

Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности. Вид топлива является одним из критериев классификации систем питания ДВС.

В этой связи выделяют силовые агрегаты:

  1. бензиновые;
  2. дизельные;
  3. основанные на газообразном топливе.

Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).

Карбюратор

Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:

  • поплавковую камеру и поплавок;
  • распылитель, диффузор и смесительную камеру;
  • воздушную и дроссельную заслонки;
  • топливные и воздушные каналы с соответствующими жиклерами.

Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.

Впрыск топлива

Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).

Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления. Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.

  1. с распределенным впрыском;
  2. с центральным впрыском.

Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.

Особенности дизельного двигателя

Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем. В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:

  • с непосредственным впрыском;
  • с вихрекамерным впрыском;
  • с предкамерным впрыском.

Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д.

Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.

Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси. Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Впускные и выпускные трубопроводы

Впускные трубопроводы служат для подвода горючей смеси в цилиндры двигателя, а выпускные — для отвода отработавших га­зов из цилиндров.

Впускные трубопроводы у двигателей с V-образным расположе­нием цилиндров располагаются в развале между цилиндрами и имеют сложную форму. Трубопроводы должны оказывать мини­мальное сопротивление перемещению газов, так как это необхо­димо для лучшего наполнения цилиндров двигателя.

У всех карбюраторных двигателей впускные трубопроводы имеют устройства для подогрева горючей смеси. Для этой цели каналы, по которым горючая смесь подается в цилиндры двигателя, омы­ваются горячей водой. При работающем двигателе горячая вода подогревает трубопровод, а вместе с ним и горючую смесь, улуч­шая испарение бензина.

Устройство для подогрева горючей смеси включает в себя заслонку (рис. 10), на наружном конце оси которой установлен сектор с надписями «Зима» и «Лето». Сектор удерживается в нужном положе­нии при помощи стопорной шпильки и гайки 7. Когда температура наружного воздуха поднимется выше

5 С, заслонку нужно повернуть в положение «Лето». При этом она занимает горизонтальное поло­жение, и отработавшие газы напрямую выходят в глушитель, меньше соприкасаясь со стенкой впускной трубы и меньше подогревая горю­чую смесь. Зимой при эксплуатации заслонку поворачивают в поло­жение «Зима», и она перегораживает выпускной трубопровод. Отра­ботавшим газам приходится огибать заслонку сверху, соприкасаясь со стенкой впускной трубы и более интенсивно ее нагревать.

Рис.10 Элементы системы впуска и выпуска отработавших газов и подогрева горючей смеси:

а – впускной и выпускной трубопроводы (двигатель автомобиля ГАЗ – 3102 «Волга»); б и в – положение заслонки, соответствующие наименьшему и наибольшему подогреву смеси; г – глушитель шума системы выпуска; 1 – впускной трубопровод; 2 – прилив для установки карбюратора; 3 – отверстие для штуцера трубопровода вакуумного усилителя тормозных механизмов; 4 – прокладка; 5 – выпускной трубопровод; 6 – сектор регулировки подогрева; 7 – стопорная шпилька и гайка; 8 – заслонка; 9, 14 – днища глушителя; 10 – корпус; 11 – перегородка; 12 – камера; 13 – внутренняя труба; 15 – выпускная труба; 16 – патрубки передней стенки глушителя; 17 – приемные трубы глушителя.

Подогрев горючей смеси необходим потому, что смесь, поступа­ющая из карбюратора во впускной трубопровод, содержит значи­тельную часть топлива в виде капелек. Они оседают на стенках впуск­ного трубопровода, образуя сплошную топливную пленку. Топлив­ная пленка поступает в цилиндр неравномерно, что приводит к из­менению состава горючей смеси и ухудшению работы двигателя.

Однако излишний перегрев горючей смеси тоже вреден, так как при сильном расширении смеси весовой заряд цилиндров уменьшается, что приводит к потери мощности.

Выпускные трубопроводы отливаются из чугуна, у V-образныхдвигателей для каждого ряда цилиндров отдельно. У рядных двигателей в выпускном трубопроводе установлена заслонка для регулировки степени подогрева горючей смеси.

Веганство

Если вегетарианство часто используется, как способ похудения, предполагая лишь частичный отказ от животной пищи, то веганство – это целая философия, направленная на полную гармонию с окружающим миром. Следуя этому принципу, веганы употребляют только растительную пищу, полностью отказавшись от:

  • мяса и мясных продуктов;
  • рыбы и морепродуктов;
  • молока и молочных продуктов;
  • яиц;
  • любые продукты связанные с животными

Ежедневный рацион состоит из фруктов, овощей, зелени, проросших семян, орехов. Правильно сбалансированные веганские диеты обеспечивают организм практически всеми необходимыми микро- и макроэлементами. Веганство допускает приготовление и термическую обработку пищи, исключая вышеуказанные продукты.

Одним из больших плюсов веганста является исключение из рациона всего, что связанно с животными, и речь идет не только о мясе, как обычно принято думать, а всех продуктов, которые хоть как-то связаны с животными. При переходе на такой вид питания у человека очень быстро проходят различные аллергии, сыпи на коже, так как именно чужеродный белок, о котором более подробно описано в статье, очень часто является источником таких реакций организма.

Система питания двигателя воздухом

22>

Система питания двигателя воздухом (рис. 2.82) предназначена для отбора воздуха из атмосферы, очистки его от пыли и подвода его к цилиндрам двигателя.

В систему входят:воздухозаборник, воздушный фильтр, приемная труба, трубы воздуховода, устройство для пылеудаления, турбокомпрессоры, впускные трубопроводы.

Воздушный фильтр (рис. 2.83) – сухого типа, двухступенчатый: первая ступень – инерционная решетка с отсосом пыли, вторая – сменный фильтрующий элемент. Воздушный фильтр предназначен для очистки воздуха поступающего в двигатель. Он установлен в отделении силовой установки на нише правого четвертого колеса.

Рис. 2.82 Система питания двигателя воздухом

1

– воздушный фильтр;2 – шланг индикатора засоренности;3 – индикатор асоренности,4 – приемная труба;5 и17 – трубы воздуховода;6 и12 – хомуты;7 – трубка шланга индикатора;8 – защитный колпак воздухозаборника;9 – хомут крепления фильтра;10 – кронштейн крепления фильтра;11 ,13 ,15 и16 –соединительные шланги;14 – патрубок

Рис. 2.83 Воздушный фильтр 1 – корпус фильтра;2 – входной патрубок;3 –фильтрующий элемент;4 и10 – уплотнительные кольца;5 – защелка;6 – крышка;7 – гайка крепления фильтрующего элемента;8 –патрубок системы отсоса пыли;9 – выходной патрубок

Рис. 2.84. Индикатор засоренности воздушного фильтра 1 – диск с накаткой;2 – сигнальный флажок

Индикатор (рис. 2.84) засоренности воздушного фильтра установлен на экране воздухозаборного патрубка и соединен с приемной трубой. По мере засоренности воздушного фильтра в приемной трубе возрастает разрежение. При достижении разрежения 700 мм. вод. ст. индикатор срабатывает, при этом сигнальный флажок 2

закрывает окно индикатора и не открывает его после остановки двигателя, что свидетельствует о необходимости обслуживания воздушного фильтра. Точность показания индикатора проверяется при подготовке машины к летней эксплуатации.

Устройство для пылеудаления (рис. 2.85) – предназначено для отсоса пыли из первой ступени воздушного фильтра и выброса ее в атмосферу. Для предотвращения попадания воды и выпускных газов в воздушный фильтр при погружении кормы в воду или захлестывании волной служит клапан 14

. С включением водометного движителя одновременно закрывается клапан.

Рис. 2.85. Устройство пылеудаления 1 – рукоятка тяги клапана (на машинах выпуска до 1990 года);2 – перегородка отделения силовой установки;3 и10 –отводящие трубы;4 – разделительная труба;5 – глушитель;6 – эжектор пылеудаления;7 – эжектор охлаждения кожухов;8 –клапанный механизм;9 – тяга клапана;11 – угловой соединительный шланг;12 – рычаг валика клапана;13 – валик клапана;14 – клапан;

Турбокомпрессоры (рис. 2.86) – предназначены для увеличения массового заряда воздуха в цилиндрах двигателя за счет использования энергии отработавших газов. Они установлены непосредственно на выпускных коллекторах по одному на каждый ряд цилиндров.

Устройство для выпуска отработанных газов – предназначено для выброса в атмосферу отработанных газов, а также частичного отвода тепла от двигателя. Состоит из двух выпускных коллекторов, двух приемных труб, двух глушителей с установленными на них эжекторами.

Рис. 2.86. Турбокомпрессор 1 – маслосбрасывающий экран;2 – фиксатор;6 и13 – прокладки;4 – уплотнительное кольцо;5 – переходник;7 –экран;8 – крышка уплотнения;9 – корпус турбины;10 – ротор;11 – втулка-кольцедержатель;12 –выпускной коллектор;14 – уплотнительное кольцо;15 –корпус подшипников;16 – экран корпуса ком- прессора;17 – вставка диффузора;18 – корпус компрессора;19 – подшипник;20 – маслоотражатель;21 – колесо компрессора;22 – гайка крепления колеса компрессора

22>

Дата добавления: 2016-10-26; просмотров: 2904; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Инжектор и его устройство

Суть функционирования инжектора лежит в том, что топливо принудительно впрыскивается в проходящий поток воздуха. При этом подача бензина осуществляется под давлением, что обеспечивает его распыление, тем самым улучшается его смешивание с воздухом.

Если рассмотреть любую топливную систему, то состоит она из двух основных составляющих – первая обеспечивает поступление воздуха, вторая – топлива.

Воздушная часть, по сути, идентична на всех моторах, в том числе и инжекторном. Представляет она собой объемный канал, на конце которого установлен фильтр, очищающий воздух от примесей. Этот канал соединен с впускным коллектором, а тот в свою очередь ведет к впускным клапанам системы ГРМ.

Всасывание воздуха осуществляется самим двигателем. При движении поршня (на такте впуска) над ним образуется разряжение. При этом открывается впускной клапан, и это движение сопровождается втягиванием воздуха в цилиндр. В общем, все достаточно просто.

А вот устройство и функционирование топливной части значительно сложнее. Состоит она из ряда элементов, каждый из которых выполняет свои функции.

Топливная система состоит из:

  • бак с системой вентиляции;
  • электрический бензонасос;
  • фильтр тонкой очистки;
  • регулятор давления;
  • трубопроводы (подачи, обратного слива);
  • топливная рампа;
  • форсунки.


Топливная система инжектора

Бак является вместилищем бензина, откуда он поступает далее в систему. В инжекторной системе бензонасос располагается непосредственно в баке, и в задачу его входит закачка бензина под давлением в остальные составляющие части.

Бензин из насоса сначала попадает в подающую магистраль, ведущую к фильтру. Проходя очистной элемент, из топлива удаляются мелкие примеси. Из фильтра бензин по той же магистрали подается на регулятор, поскольку давление в системе должно держаться в строго заданных параметрах. Выравнивание давления происходит очень просто – лишняя часть топлива по сливной магистрали возвращается в бак.

После регулятора бензин подается на топливную рампу, которая распределяет его по форсункам. По сути, рампа является соединительной трубкой. В задачу же форсунок входит впрыск топлива в проходящий поток воздуха.

Существует несколько видов топливной системы инжектора, отличающиеся по некоторым конструктивным решениям. Так, первые инжекторы были моновпрысковыми, то есть у них использовалась только одна форсунка, установленная во впускной коллектор. В такой конструкции рампа отсутствовала, как таковая.

Сейчас же используются инжекторы с многоточечным впрыском (распределенным), где на каждый цилиндр предусмотрена своя форсунка, и здесь рампа уже используется. При этом форсунки все также устанавливаются во впускной коллектор, только каждая в свой канал.

Самым современным является инжектор с прямым впрыском. Это тоже система распределенного впрыска, у нее подача бензина осуществляется напрямую в цилиндр.

Также устройство топливной системы инжектора имеет еще одну составляющую часть – электронную, которая включает в себя блок управления и ряд датчиков. В задачу ее входит контроль режима работы силового агрегата и определения количества подаваемого топлива. Именно эта составляющая регулирует работу форсунок.