Оглавление
- Двигатель 1G-FE Toyota
- Опыт эксплуатации и обслуживания
- Плавное включение или Fiat MultiAir, BMW Valvetronic, Nissan VVEL, Toyota Valvematic
- Принцип работы
- Dual VVT-i[edit]
- Описание устройства мотора 1G FE
- Характеристики двигателя Тойота 1ZR
- Dual VVT-i[edit]
- BEAMS
- Развитие технологии VVT-i: что ещё придумали японцы?
- Принцип действия VVT
- Неисправности и ремонт
- Есть ли проблемы у надежного японского мотора 1G-FE BEAMS?
- Управление фазами газораспределения по-японски
- VVTL-i
- Как очистить клапан?
- Модификации
Двигатель 1G-FE Toyota
Серия двигателей 1G отсчитывает свою историю с 1979 года, когда на конвейеры Toyota для оснащения заднеприводных автомобилей класса Е и Е+ (Crown, Mark 2, Chaser, Cresta, Soarer) впервые стала поставляться 12-клапанная рядная «шестерка» с индексом 1G-EU. Именно ей на смену в 1988 году пришел знаменитый двигатель 1G-FE, долгие годы обладавший неформальным титулом самого надежного агрегата в своем классе.
В неизменном виде 1G-FE производился восемь лет, а в 1996 году был подвергнут незначительной доработке, в результате которой максимальная мощность и крутящий момент двигателя «подросли» на 5 единиц. Эта доработка не затрагивала принципиально конструкцию ДВС 1G-FE и была вызвана очередным рестайлингом популярных моделей Toyota, получивших в дополнение к обновленным кузовам еще и более «мускулистую» силовую установку.
Глубокая модернизация ожидала мотор в 1998 году, когда для спортивной модели Toyota Altezza понадобился двигатель аналогичной конфигурации, но с более высокими характеристиками. Конструкторам Toyota удалось решить эту задачу путем увеличения частоты вращения ДВС, повышения степени сжатия и внедрения в ГБЦ целого ряда современных электронных устройств. Обновленная модель получила дополнительную приставку к своему имени — 1G-FE BEAMS (Breakthrough Engine with Advanced Mechanism System). Это означало, что ДВС на тот момент времени относился к классу самых современных моторов, использующих усовершенствованные механизмы и системы.
Опыт эксплуатации и обслуживания
Вся история эксплуатации двигателей серии 1G подтверждает устоявшееся мнение об их высокой надежности и неприхотливости
Специалисты обращают внимание владельцев автомобилей лишь на два момента: необходимость контроля состояния ремня ГРМ и важность своевременной замены моторного масла. Первым от старого или некачественного масла страдает клапан VVTi, который элементарно засоряется. Часто причиной неисправности может быть не сам двигатель, а навесные устройства и дополнительные системы, обеспечивающие его функционирование
Например, если машина не заводится, первым делом надо проверять генератор и стартер. Важнейшую роль в «здоровье» двигателя играют термостат и водяная помпа, обеспечивающие комфортный температурный режим. Большинство проблем с ДВС позволяет выявить самодиагностика автомобилей Toyota — способность бортовой электроники авто «фиксировать» возникающие в системах неисправности и отображать их при определенных манипуляциях со специальными разъемами
Часто причиной неисправности может быть не сам двигатель, а навесные устройства и дополнительные системы, обеспечивающие его функционирование. Например, если машина не заводится, первым делом надо проверять генератор и стартер. Важнейшую роль в «здоровье» двигателя играют термостат и водяная помпа, обеспечивающие комфортный температурный режим. Большинство проблем с ДВС позволяет выявить самодиагностика автомобилей Toyota — способность бортовой электроники авто «фиксировать» возникающие в системах неисправности и отображать их при определенных манипуляциях со специальными разъемами.
В процессе эксплуатации в ДВС 1G наиболее часто могут возникать следующие проблемы:
- Подтекание моторного масла через датчик давления. Устраняется заменой датчика на новый.
- Сигнализация недостаточного давления масла. В большинстве случаев вызвана неисправностью датчика. Устраняется заменой датчика на новый.
- Нестабильность оборотов холостого хода. Этот дефект может вызываться сбоями следующих устройств: клапан холостого хода, дроссельная заслонка или датчик положения дроссельной заслонки. Устраняется настройкой или заменой неисправных устройств.
- Трудности при запуске холодного двигателя. Возможные причины: не работает форсунка холодного пуска, нарушена компрессия в цилиндрах, неправильно выставлены метки ГРМ, тепловые зазоры клапанов не соответствуют допускам. Устраняются правильной настройкой, регулировкой или заменой неисправных устройств;
- Большой расход масла (свыше 1 л на 10000 км). Обычно вызывается «залеганием» маслосъемных колец при долгой эксплуатации ДВС. Если не помогают стандартные мероприятия по раскоксовке, то помочь может только капитальный ремонт двигателя.
Ниже приведен перечень тех операций, которые необходимо проводить в обязательном порядке через определенный километраж пробега:
- замена моторного масла — через 10 тыс. км. Общая рекомендация Toyota: для 1G-FE — масло 5W30 (5W20) SJ; для 1G-FE BEAMS — 5W20 SL/GF-3. Объем заливки 3.9 л, в масляный фильтр входит 0.2 л.
- замена комплекта ремня ГРМ — через 100 тыс. км. В процессе этой операции обычно производится и замена помпы;
- замена свечей зажигания — через 20 тыс. км. Для 1G-FE применяются свечи 90919-01164 (Denso K16R-U11), для 1G-FE BEAMS 90919-01184 (Denso K20PR-U11);
- замена топливного фильтра — через 20 тыс. км. Для 1G-FE топливный фильтр 23300-79145 (до 08.1990 г.) и 23300-79146 (после 08.1990 г.). Находится под капотом, рядом с топливной рампой. Для 1G-FE BEAMS фильтр 23300-21010, находится в баке;
- проверка и регулировка клапанов с помощью шайб на холодном двигателе (зазоры клапанов: впускные 0.15-0.25 мм, выпускные 0.25-0.35 мм) — через 20 тыс. км пробега (для 1G-FE BEAMS).
Плавное включение или Fiat MultiAir, BMW Valvetronic, Nissan VVEL, Toyota Valvematic
Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.
«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).
Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic). Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.
Источники
https://avtonov.com/vvt-i-%D1%87%D1%82%D0%BE-%D1%8D%D1%82%D0%BE-%D0%B7%D0%B0-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0-%D0%BD%D0%B0-toyota/ https://autodata.ru/article/all/sistema_toyota_vvt_i/ https://auto-ru.ru/vvti-toyota-chto-eto.html https://bg-moskva.ru/printsip-raboty-mufty-vvti https://systemsauto.ru/vpusk/vvt.html https://car.ru/remont-auto-svoimi-rukami/dvigatel-i-ego-komponenty/28279-klapan-vvt-i-kak-ustroen-i-printsip-deystviya-datchika-faz/ https://principraboty.ru/vvti-princip-raboty/ https://autodont.ru/grm/vvti https://toyota-camry-corolla.ru/dvigateli/klapan-vvt-i/ https://techautoport.ru/dvigatel/mehanicheskaya-chast/sistema-cvvt.html https://7gear.ru/tuning/vvti.html
Принцип работы
Принцип работы данных систем основан на повороте распределительного вала по ходу вращения, чем достигается раннее открытие клапанов по сравнению с исходным положением.
Конструкция системы изменения фаз газораспределения данного типа включает гидроуправляемую муфту и систему управления этой муфтой.
Гидроуправляемая муфта (обиходное название фазовращатель) непосредственно осуществляет поворот распределительного вала. Муфта состоит из ротора, соединенного с распределительным валом, и корпуса, в роли которого выступает шкив привода распределительного вала. Между ротором и корпусом имеются полости, к которым по каналам подводится моторное масло. Заполнение той или иной полости маслом обеспечивает поворот ротора относительно корпуса и соответственно поворот распределительного вала на определенный угол.
В большинстве своем гидроуправляемая муфта устанавливается на распределительный вал впускных клапанов. Для расширения параметров регулирования в отдельных конструкциях муфты устанавливаются на впускной и выпускной распределительные валы.
Система управления обеспечивает автоматическое регулирование работы гидроуправляемой муфты. Конструктивно она включает входные датчики, электронный блок управления и исполнительные устройства. В работе системы управления используются датчики Холла, оценивающие положения распределительных валов, а также другие датчики системы управления двигателем: частоты вращения коленчатого вала, температуры охлаждающей жидкости, расходомер воздуха. Блок управления двигателем принимает сигналы от датчиков и формирует управляющие воздействия на исполнительное устройство — электрогидравлический распределитель. Распределитель представляет собой электромагнитный клапан и обеспечивает подвод масла к гидроуправляемой муфте и отвод от нее в зависимости от режимов работы двигателя.
Система изменения фаз газораспределения предусматривает работу, как правило, в следующих режимах:
- холостой ход (минимальные обороты коленчатого вала);
- максимальная мощность;
- максимальный крутящий момент.
Другая разновидность системы изменения фаз газораспределения построена на применении кулачков различной формы, чем достигается ступенчатое изменение продолжительности открытия и высоты подъема клапанов. Известными такими системами являются:
- VTEC, Variable Valve Timing and Lift Electronic Control от Honda;
- VVTL-i, Variable Valve Timing and Lift with intelligence от Toyota;
- MIVEC, Mitsubishi Innovative Valve timing Electronic Control от Mitsubishi;
- Valvelift System от Audi.
Данные системы имеют, в основном, схожую конструкцию и принцип действия, за исключением Valvelift System. К примеру, одна из самых известных система VTEC включает набор кулачков различного профиля и систему управления.
Распределительный вал имеет два малых и один большой кулачок. Малые кулачки через соответствующие коромысла (рокеры) соединены с парой впускных клапанов. Большой кулачок перемещает свободное коромысло.
Система управления обеспечивает переключение с одного режима работы на другой путем срабатывания блокирующего механизма. Блокирующий механизм имеет гидравлический привод. При низких оборотах двигателя (малой нагрузке) работа впускных клапанов производится от малых кулачков, при этом фазы газораспределения характеризуются малой продолжительностью. При достижении оборотов двигателя, определенного значение система управления приводит в действие блокирующий механизм. Коромысла малых и большого кулачков соединяются с помощью стопорного штифта в одно целое, при этом усилие на впускные клапаны передается от большого кулачка.
Другая модификация системы VTEC имеет три режима регулирования, определяемые работой одного малого кулачка (открытие одного впускного клапана, малые обороты двигателя), двух малых кулачков (открытие двух впускных клапанов, средние обороты), а также большого кулачка (высокие обороты).
Dual VVT-i[edit]
BEAMS 3S-GE 5th-generation engine («Black Top»). The first to be fitted with Dual VVT-i
The Dual VVT-i system adjusts timing on both intake and exhaust camshafts. It was first introduced in 1998 on the engine.
Dual VVT-i is also found in Toyota’s new generation V6 engine, the 3.5-litre first appearing on the 2005 Avalon. This engine can now be found on numerous Toyota and Lexus models. By adjusting the valve timing, engine start and stop occurs almost unnoticeably at minimum compression. Fast heating of the catalytic converter to its light-off temperature is possible, thereby reducing hydrocarbon emissions considerably.
Most Toyota engines including the 1LR-GUE (V10, used in the Lexus LFA), UR engines (V8), GR engines (V6), AR engines (large I4), ZR engines (medium I4), and NR engines (small I4) now use this technology.
Описание устройства мотора 1G FE
Стоковая модель
Первая разработка серии G с обозначением 1G EU, представляла собой чугунный блок с 6 цилиндрами, расположенными в ряд, и головкой на 12 клапанов. Мощность мотора достигала 125л.с./5400, а крутящий момент — 160Нм/4400. Последующие доработки конструкции помогли усилить характеристики и улучшить работу систем. Однако, рабочий объём двигателя, 1988 куб. см, размер цилиндра и ход поршня по 75 мм, остались неизменными для всей линейки.
При разработке Toyota 1G FE перед заводом стояла задача создать компактный современный двигатель взамен 1G EU. Для этого использовали узкую ГБЦ, ранее сконструированную инженерами Yamaha, в которую поместились 24 клапана: по 2 впуска и 2 выпуска на цилиндр. Блок цилиндров оставили чугунным.
Газораспределительный механизм построили по схеме DOHC с двумя распредвалами. Впускной вал приводился зубчатым ремнём, выпускной — от шестерни Twincam. Для регулировки теплового зазора использовали толкатели с регулировочными шайбами. Ремень ГРМ приводил также водяной насос и натягивался с помощью роликов.
Двигатель 1G FE работал под управлением ЭБУ. Инжекторную систему впрыска оснастили MAP-сенсором. Система зажигания работала от трамблера, который получал высокое напряжение от катушки. Первая модель агрегата не получила сложных электронных устройств.
Модернизация
В 1996 году вышла рестайлинговая версия 1G FE. Инженеры обновили систему управления, доработали форсунки. В результате удалось повысить мощность движка на 5 л. с. Настоящее обновление началось в 1998 году, когда потребовалось создать форсированный двигатель для Altezza на базе существующего задела.
В результате модернизации ДВС 1G FE с приставкой BEAMS превратился в самостоятельный агрегат, имеющий мало общего со стоковой версией. Поменялась конструкция головки, шатунно-поршневая группа, форсунки. Теперь на днищах поршней отсутствовали выточки. Для регулировки зазоров установили толкатели со сменными стаканчиками.
- систему впуска оснастили системой изменения фаз газораспределения VVT-i. Теперь на 6000 оборотах стандартный кулачок распредвала замещался кулачком с другим профилем, что позволило нарастить тягу для уверенного разгона;
- дроссельную заслонку заменили на электронную ETCS;
- впускной коллектор получил изменяемую геометрию, благодаря установке электропневмоклапана ACIS;
- контактное зажигание заменили на DIS6 — «систему зажигания без распределителя». Теперь на каждый цилиндр приходила своя катушка,что повысило точность и надёжность системы.
BEAMS стал мощнее, экономичнее и экологичнее предшественника. Степень сжатия повысили до 10 к 1. Экологические нормы выросли с Евро-2 до Евро-3.
Характеристики двигателя Тойота 1ZR
Производство | Toyota Motor Manufacturing West Virginia Shimoyama Plant |
Марка двигателя | Toyota 1ZR |
Годы выпуска | 2007-наши дни |
Материал блока цилиндров | алюминий |
Система питания | инжектор |
Тип | рядный |
Количество цилиндров | 4 |
Клапанов на цилиндр | 4 |
Ход поршня, мм | 78.5 |
Диаметр цилиндра, мм | 80.5 |
Степень сжатия | 10.2 10.7 |
Объем двигателя, куб.см | 1598 |
Мощность двигателя, л.с./об.мин | 126/6000 134/6400 |
Крутящий момент, Нм/об.мин | 157/5200 160/4400 |
Топливо | 95 |
Экологические нормы | Евро 5 |
Вес двигателя, кг | — |
Расход топлива, л/100 км (для Corolla E140) — город — трасса — смешан. | 8.9 5.8 6.9 |
Расход масла, гр./1000 км | до 1000 |
Масло в двигатель | 0W-20 5W-20 5W-30 10W-30 |
Сколько масла в двигателе | 4.7 |
Замена масла проводится, км | 10000 (лучше 5000) |
Рабочая температура двигателя, град. | — |
Ресурс двигателя, тыс. км — по данным завода — на практике | н.д. 250-300 |
Тюнинг — потенциал — без потери ресурса | 200+ н.д. |
Двигатель устанавливался | Toyota Auris Toyota Verso Lotus Elise |
Dual VVT-i[edit]
BEAMS 3S-GE 5th-generation engine («Black Top»). The first to be fitted with Dual VVT-i
The Dual VVT-i system adjusts timing on both intake and exhaust camshafts. It was first introduced in 1998 on the engine.
Dual VVT-i is also found in Toyota’s new generation V6 engine, the 3.5-litre first appearing on the 2005 Avalon. This engine can now be found on numerous Toyota and Lexus models. By adjusting the valve timing, engine start and stop occurs almost unnoticeably at minimum compression. Fast heating of the catalytic converter to its light-off temperature is possible, thereby reducing hydrocarbon emissions considerably.
Most Toyota engines including the 1LR-GUE (V10, used in the Lexus LFA), UR engines (V8), GR engines (V6), AR engines (large I4), ZR engines (medium I4), and NR engines (small I4) now use this technology.
BEAMS
Термин BEAMS — это аббревиатура Breakthrough Engine with Advanced Mechanism System или в переводе Новейший двигатель с усовершенствованной системой механизмов т.е. BEAMS — это целое семейство (или поколение) двигателей (абсолютно всех типов) с установленными механическими газораспределительными механизмами с возможностью изменения фаз любой конструкции: VVT, VTEC, MIVEC, Vanos или любых других. BEAMS — это общий автомобильный термин, относящийся не только к Toyota, но и к Subaru, BMW, Mercedes, Audi, Honda и прочим. Следующее поколение двигателей было названо Dual BEAMS и относилось к ДВС с установленными газораспределительными механизмами VVT-i, iVTEC, Double Vanos, Bi-Vanos и прочими с дополнительным электронным управлением, кроме механического привода.
Wikimedia Foundation . 2010 .
- BD -22°5866
- BGL Luxembourg Open 2009
Смотреть что такое «BEAMS» в других словарях:
Beams — is a Japanese clothing brand, established in 1976 whose chief executive officer (CEO) is Yo Shitara. Besides stores in many places in Japan, they have branch offices in New York, Milano, London and Paris. [http://www.beams.co.jp/beams company/]… … Wikipedia
beams — beams; beams·man; … English syllables
BEAMS — Building Engagement And Attainment Of Minority Students (Academic & Science » Universities) … Abbreviations dictionary
Beams — This distinguished surname is of Old French origin, and is a locational name from Beaumais sur Dive in Calvados, Normandy, or Beaumetz in Somme and Pas de Calais. These places are so called from the Old French beu , fair, lovely, and mes ,… … Surnames reference
beams — biËm n. ray of light; radio wave; broad smile; horizontal support or joist used in building frames; balance beam, gymnastic wooden bar on legs on which women gymnasts stand and perform balancing exercises; full width of a ship v. smile with joy; … English contemporary dictionary
BEAMS — … Useful english dictionary
beams|man — «BEEMZ muhn», noun, plural men. a man who works in a beam house … Useful english dictionary
Beams (album) — Infobox Album | Name = Beams Type = studio Artist = The Presets Released = 20 May 2005 Recorded = Genre = Electronic Length = Label = Modular Producer = Reviews = *Allmusic rating|4|5 [http://www.allmusic.com/cg/amg.dll?p=amg sql=10:h9foxq9dldke… … Wikipedia
Beams (disambiguation) — The term Beams may refer to:* Beams, a Japanese clothing brand. * Beams , an album by The Presets. * Jesse Beams, a physicist (circa World War II) at University of Virginia and prolific inventor.ee also* beam * BEAM robotics * beam theory … Wikipedia
beams matching — pluoštų suderinimas statusas T sritis radioelektronika atitikmenys: angl. beams matching vok. Bündelanpassung, f rus. согласование пучков, n pranc. adaptation des faisceaux, f … Radioelektronikos terminų žodynas
Развитие технологии VVT-i: что ещё придумали японцы?
Есть и другие разновидности этой технологии. Так, к примеру, Dual VVT-i управляет работой не только распредвала впускных клапанов, но и выпускных.
Это позволило достичь ещё более высоких параметров двигателей. Дальнейшее развитие идеи получило название VVT-iE.
Здесь уже инженеры Toyota полностью отказались от гидравлического способа управления положением распредвала, который имел ряд недостатков, ведь для поворота вала необходимо было, чтобы давление масла поднялось до определённого уровня.
Устранить данный недостаток удалось благодаря электромоторам – теперь они поворачивают валы. Вот так вот.
Спасибо за внимание, теперь вы сами можете ответить кому угодно на вопрос «VVT-i Toyota что это такое и как оно работает». Не забывайте подписываться на наш блог и до новых встреч!
Не забывайте подписываться на наш блог и до новых встреч!
Источник
Принцип действия VVT
Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:
- поворотом распределительного вала относительно шестерни распредвала;
- включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
- изменением высоты подъема клапанов.
Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.
- Рено – Variable Cam Phases (VCP).
- БМВ – VANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
- Тойота — Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
- Хонда — Variable Timing Control (VTC).
- Фольксваген в данном случае поступили более консервативно и выбрали международное название — Variable Valve Timing (VVT).
- Хюндай, Киа, Вольво, GM — Continuous Variable Valve Timing (CVVT).
Как фазы влияют на работу двигателя
Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув (подробней об акустическом наддуве в статье о системе изменения геометрии впускного коллектора), так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.
Неисправности и ремонт
Распространенные дефекты моторов поколения 1G:
- Повышенный расход масла свидетельствует о залегании поршневых колец. Явление считается нормальным с учетом срока эксплуатации моторов. В ряде случаев владельцам удается восстановить работоспособность путем заливки специальных присадок. Если расход масла не снижается, то требуется проведение капитального ремонта или замена двигателя на контрактный агрегат с заведомо малым пробегом.
- На модификации Toyota 1G FE возникают проблемы с датчиком давления в системе смазки. Ремонт заключается в проверке давления масла тестовым манометром и замене поврежденного элемента. Рекомендуется проверить состояние проводки датчика. Сама система смазки является герметичной, течь возникает вокруг корпуса датчика, после установки новой детали дефект исчезает.
- Плавающие обороты холостого хода являются следствием поломки или засорения клапана или дроссельного узла. На поздних моторах выходит из строя электрический привод заслонки. Для восстановления работоспособности требуется промывка деталей и замена изношенных элементов. При сборке необходимо быть внимательным, поскольку есть риск некорректного монтажа деталей.
- Появление большого количества масла в каналах подачи сжатого воздуха. Дефект возникает вследствие естественного износа компрессора, который имеет ресурс 100-120 тыс. км. Ремонт заключается в замене вышедшего из строя узла.
Есть ли проблемы у надежного японского мотора 1G-FE BEAMS?
Семейство рядных 6-цилиндровых двигателей Toyota 1G появилось еще в 1979 году. У них классическая неубиваемая японская конструкция с чугунным блоком. У самых ранних вариантов были алюминиевые ГБЦ с одним распредвалом и 12 клапанами (по 2 клапана на цилиндр). В приводе ГРМ используется зубчатый ремень с интервалом замены в 100 000 км.
Выбрать и купить двигатель Lexus 2.0 вы можете в нашем каталоге силовых агрегатов .
Гидрокомпенсаторы отсутствуют во всех версиях двигателя 1G, которых было создано 7 штук. Вообще двигатели семейства 1G ориентированы на высокие мощностные показатели. Среди них были не только атмосферники, но и битурбированные варианты, а также двигатель с компрессором. В стоке с этого двухлитрового мотора было снято до 185 л.с.
На нашем YouTube-канале вы можете посмотреть разборку двигателя, снятого с Lexus IS200 2003 года выпуска.
Мы разобрали самую позднюю и последнюю модификацию – 1G-FE, снятую с Lexus IS 2003 года выпуска. Выпуск этого варианта двигателя начался в 1988 году. У его 24-клапанная ГБЦ, созданная инженерами Yamaha, для моторов 1G еще в 1983 году. Правда, этот вариант мотора уже переориентировали на экономичность, поэтому высоту подъема клапанов ограничили. В 1998 году этот мотор снова обновили: установили новый коленвал и цилиндро-поршневую группу, форсунки с новыми распылителями, новую ГБЦ, фазорегулятор на впускном распредвалу. Такой двигатель развивает 160 л.с. и по механическим деталям не совместим со своими предшественниками. Из-за новых поршней, с которыми степень сжатия возросла до 10:1, при обрыве ремня ГРМ происходит столкновение с клапанами.
Также на двигателе 1G-FE появился впускной коллектор изменяемой длины, электронная дроссельная заслонка. Такой двигатель известен как 1G-FE BEAMS («прорывной двигатель с продвинутыми механизмами»).
Большинство двигателей 1G-FE можно встретить на автомобилях Toyota для собственного японского рынка, а в Европе он был представлен на Lexus IS, который в Японии известен как Toyota Altezza. Выпуск двигателей 1G прекратился в 2008 году.
Управление фазами газораспределения по-японски
Начнём с расшифровки.
Аббревиатура VVT-i звучит на языке оригинала как Variable Valve Timing intelligent, что переводим как интеллектуальное изменение фаз газораспределения.
Впервые на рынке эта технология представлена компанией Toyota десять лет назад, в 1996 году. Аналогичные системы есть у всех автоконцернов и брендов, что говорит об их пользе. Называются они, правда, все по-разному, путая рядовых автолюбителей.
Что же привнесла VVT-i в моторостроение? В первую очередь – повышение мощности, равномерной во всём диапазоне оборотов. Моторы стали экономичнее, а следовательно более эффективнее.
Управление фазами газораспределения или управление моментом поднятия и опускания клапанов, происходит при помощи поворота на нужный угол распределительного вала.
Как это реализовано технически, рассмотрим далее.
VVTL-i
Двигатель 2ZZ-GE, первый с VVTL-i
VVTL-i (интеллектуальная система с регулируемой синхронизацией и подъемом клапана) (также иногда обозначаемая как VVT-iL или Variable Valve Timing and Intelligence with Lift) — это улучшенная версия VVT-i, которая может изменять подъем (и продолжительность ) клапана, а также клапан сроки. В случае 16-клапанного головка двигателя напоминает типичную конструкцию DOHC с отдельными кулачками для впуска и выпуска и двумя впускными и двумя выпускными клапанами (всего четыре) на цилиндр. В отличие от традиционной конструкции, каждый распределительный вал имеет два кулачка на цилиндр, один из которых оптимизирован для работы на низких оборотах, а другой — для работы на высоких оборотах, с более высоким подъемом и большей продолжительностью работы. Каждая пара клапанов управляется одним коромыслом, который приводится в действие распределительным валом. Каждое коромысло имеет толкатель, установленный на коромысле с помощью пружины, что позволяет подвижному толкателю свободно перемещаться вверх и вниз вместе с высоким лепестком, не затрагивая коромысло. Когда двигатель работает ниже 6000-7000 об / мин (в зависимости от года выпуска, автомобиля и установленного блока управления двигателем), нижний выступ управляет коромыслом и, следовательно, клапанами, а толкатель свободно вращается рядом с коромыслом. Когда двигатель работает выше точки включения подъемника, ЭБУ активирует реле давления масла, которое проталкивает скользящий штифт под толкатель на каждом коромысле. Коромысло теперь заблокировано в движениях толкателя и, таким образом, следует за движением выступа кулачка для высоких оборотов и будет работать с профилем кулачка для высоких оборотов до тех пор, пока штифт не выйдет из зацепления ЭБУ. Подъемная система в принципе аналогична работе Honda VTEC .
Впервые система была использована в 1999 году в Toyota Celica с . В настоящее время Toyota прекратила производство своих двигателей VVTL-i для большинства рынков, поскольку двигатель не соответствует требованиям Euro IV по выбросам. В результате этот двигатель был снят с производства на некоторых моделях Toyota, включая Corolla T-Sport (Европа), Corolla Sportivo (Австралия), Celica , Corolla XRS , Toyota Matrix XRS и Pontiac Vibe GT, все из которых имел двигатель . продолжает предлагать и двигатель, в то время как Exige предлагает двигатель с нагнетателем .
Как очистить клапан?
Многие неисправности можно вылечить при помощи очистки датчика. Для начала нужно найти клапан VVTI. Где находится этот элемент, можно увидеть на фото ниже. Он обведен на картинке.
Для демонтажа датчика снимают пластиковую крышку силового агрегата. Затем снимают металлическую крышку, которая фиксирует генератор. Под крышкой будет виден нужный клапан. С него необходимо отключить электрический разъем и открутить болт. Ошибку здесь допустить очень трудно – это болт здесь единственный. Затем клапан VVTI 1NZ можно снять. Но для этого не нужно тянуть за разъем. Он очень плотно прилегает к датчику. Также на нем устанавливается резиновое уплотнительное кольцо.
Очистку можно провести с помощью жидкостей для очистки карбюраторов. Чтобы полностью прочистить систему, снимают и фильтр. Этот элемент находится под клапаном – он представляет собой заглушку, в которой имеется отверстие под шестигранник. Фильтр также нужно очищать этой жидкостью. После всех операций остается только собрать все в обратном порядке, а затем установить ремень генератора, не упираясь при этом в сам клапан.
Модификации
- С августа 1998 года выходит новая версия мотора – 1G FE Beams. С системой VVT-i и повышенной мощностью 160 л. с. при 6200 оборотах.
- В 1996 году был проведен небольшой рестайлинг двигателя 1G FE Beams. Показатель максимальной мощности увеличился до 140 лошадиных сил, а крутящий момент составил 185. Улучшить мощностные характеристики удалось за счет перенастройки блока управления двигателя 1G FE Beams и переводом мотора с 92 бензина на Аи 95. Впрочем, большинство автовладельцев с успехом эксплуатируют свои автомобили с этим двигателем на бензине А-92, и какие-либо нарекания по надежности и динамике автомобиля отсутствуют.
- В 1998 году мотор был существенно изменен. Он получил новую ШПГ, обновленный коллектор с возможностью регулировки геометрии, обновленную систему фаз газораспределения, полностью электронную дроссельную заслонку. Также на 1G FE Beams была изменена система зажигания.
Особенностью модификации двигателя 1G FE Beams является отсутствие гидрокомпенсаторов зазора клапанов, поэтому у 1G FE регулировка клапанов выполняется каждые 20 тысяч километров пробега. Отметим, что регулировка клапанов 1G FE не представляет сложности и при определенном опыте работы может быть выполнена самостоятельно автовладельцем.
Проведенный рестайлинг 1G FE Beams позволил увеличить мощность двигателя до 160 лошадиных сил при 6200 оборотах двигателя. Была устранена проблема с появлением масляной течи из-под клапанной крышки и заменены датчики давления масла, которые также часто выходили из строя и требовали дорогостоящей замены.
Двигатель 1G FE Beams зарекомендовал себя исключительно с положительной стороны. Надежный, простой в эксплуатации и ремонте, с отличными динамическими и техническими характеристиками.
Единственный его недостаток – малая мощность. В середине двухтысячных годов с двух литров рабочего объема удавалось с легкостью снимать более 200 лошадиных сил, тогда как даже в рестайлинговой версии этот мотор выдавал лишь 160 лошадиных сил. Именно по причине морального старения этот ДВС и был снят с производства в 2007 году.