Оглавление
- Какой тип фар лучше для вас?
- Фары автомобиля: описание,назначение,виды,устройство,маркировка,фото,видео
- Плюсы ясны, а где же минусы?
- РАЗДЕЛ 1. Корпус и конструкция передних фар
- ВОПРОСЫ
- Линзованная оптика: что это, как работает и в чем ее преимущества?
- Из каких элементов состоит матричная фара
- В чем разница между проекторным и отражающим светом?
- Где находятся регулировочные винты света фар
- Что такое ретрофит фар?
- Фотометрические термины и определения для фар
- Варианты конструкций механизмов для регулировки фар
- Литература
Какой тип фар лучше для вас?
Ниже мы по разделам объясним вам, как работает каждый тип фар, используемый сегодня в автомире. Естественно, каждый вид автомобильной оптики имеет свои плюсы и минусы. И это логично, поскольку известно, что идеального в мире не существует. Также вы должны понять, что не всем водителям нравятся современные технологии. Например, есть водители, которые ни за что не хотят отказываться от старых надежных галогенных ламп в пользу того же ксенона или светодиодов.
А какой тип фар нравится вам? Например, многие автолюбители ломают голову перед покупкой машины, решая, какой тип освещения должен быть в машине. И, тут, конечно, дилемма более сложная. Ведь наш выбор должен зависеть не только от каких-то вкусов и личных взглядов, но и от того, что выгоднее: галоген, ксенон или светодиод?
Галогенные лампы являются самым старым типом источника света в автомобильных фарах. Если вы ищете дешевые и относительно надежные фары, то вас не должно беспокоить, что галогенная оптика устарела по сравнению с современными фарами. Галогенное освещение в автомобиле проверено временем и зарекомендовало себя с довольно-таки хорошей стороны. Сегодня автомобили с галогенными фарами стоят намного дешевле, чем машины с ксеноновой или светодиодной оптикой.
Однако галогенные фары, как правило, выглядят сегодня устаревшими. Им просто не хватает высокотехнологичного внешнего вида, а также более интересных опций. В том числе галогенная оптика не может сравниться с качеством освещения дороги по сравнению с ксеноновыми или светодиодными фарами. Но главное – галоген не может соперничать с более современными фарами по сроку службы. Галогеновые лампы имеют маленький срок службы в отличие от ксеноновых или светодиодных ламп.
С другой стороны, стоимость ксеноновой лампы существенно больше галогенной. Кроме того в ксеноновых фарах используется электрооборудование, которое со временем выходит из строя. В том числе есть проблема с выгоранием линз в оптике, стоимость замены которых может быть сопоставима со стоимостью новых галогенных фар.
Так что светодиодные источники освещения, вероятнее всего, в скором времени отправят на пенсию не только галоген, но и ксенон.
Сегодня на авторынке представлено огромное количество различных светодиодных фар, начиная от самых простых и до невероятно сложных (и, следовательно, дорогостоящих для ремонта и замены). Светодиоды не только выглядят современно. На их основе автопроизводители стали разрабатывать новые виды автомобильной оптики, представив автомиру матричные и лазерные фары.
В настоящий момент матричные фары появились пока только на премиальных автомобилях, поскольку эта технология еще дорога. Матричная технология LED основана на объединении светодиодов с датчиками, что позволяет адаптировать лучи света для максимального охвата дороги впереди машины, беря в расчет встречное движение. В итоге эта технология, по сути, отправила дальний и ближний свет на пенсию. В матричных фарах у водителя нет необходимости выбирать, на каком освещении ехать (ближний, дальний). Автоматика сама решает, как освещать дорогу.
Ну и, наконец, в мире теперь есть и лазерные фары, которые предлагают лучшую осветительную мощность. Но пока их можно найти только в нескольких новых автомобилях премиум-сегмента. Причина, по которой лазерные фары пока не появились на обычных автомобилях, – это себестоимость этих фар, а также невероятно дорогая стоимость их ремонта/замены (в некоторых машинах стоимость одной фары может составлять 8000-10000 долларов). Но главной проблемой лазерных фар является их хрупкость. Например, даже при небольшом ударе и появлении трещины на стекле фары требуется полная замена блока оптики.
Итак, после того как вы получили общее представление о типах фар в сегодняшней автопромышленности, давайте теперь перейдем непосредственно к описанию каждой технологии, чтобы вы смогли выбрать для себя, какая оптика подходит вам больше всего. Вот как каждый тип фар работает.
Фары автомобиля: описание,назначение,виды,устройство,маркировка,фото,видео
В первых автомобилях использовались самые примитивные фонари — керосиновые либо ацетиленовые. Лет сто назад на место открытого пламени вставили электрическую лампочку. С одной ее стороны имелся отполированный рефлектор, с другой — линза. Герметизации фар в то время не было, так что рефлектор очень быстро ржавел. И без того слабый свет становился еще тусклее, а главное, вокруг фары образовывался ореол, слепящий встречные автомобили. Запрет на фары этого типа ввели в 1941 году.
Лампочка H13 для ближнего/дальнего света. Компьютеризованные системы настройки в процессе сборки тщательно выверяют положение контактов и нити в каждой лампочке. При этом выдерживаются допуски не более 0,01 мм. Это значит, что, заменяя лампу, вам не потребуется заново подстраивать направление фар.
Волосок для дальнего света расположен прямо в фокусе рефлектора, обеспечивая таким образом наилучшее освещение дороги. Волосок для ближнего света немного отведен от точки фокуса, исходящий от него свет обрезается в верхней части и меньше травмирует глаза встречных водителей.
В конструкциях некоторых кварцевых ламп для эффективного обрезания верхних лучей используется металлический экран
Герметичная лампа-фара мало отличается по своей сути от бытовой лампы — вольфрамовый волосок помещается в стеклянной колбе, заполненной инертным газом, но рефлектор установлен прямо внутри колбы. Эти лампы, как и обычные бытовые, постепенно теряют яркость, так как вольфрам испаряется с волоска и оседает на стенках колбы. Фары с переключением ближний/дальний свет появились только в 1920-х.
До этого из-за огромных допусков тогдашней сборки все регулировки по направлению светового потока просто не имели смысла. Герметичные фары оказались весьма дешевы — в основном из-за унификации, позволявшей гнать огромные тиражи. Фары выпускали нескольких типов, и стандартизированный подход связывал руки автодизайнерам, ограничивая возможность придать машине индивидуальный облик.
С 1973 года автопроизводители стали заменять лампы-фары на светильники с галогеновыми лампами.
Галогеновые лампы с 1980-х — самая распространенная основа для автооптики. Это небольшая лампочка, которая вставляется внутрь сборки из рефлектора и линзы. Благодаря современным герметикам и технологии сборки сейчас рефлекторы уже почти не корродируют из-за попадания влаги внутрь. Колба лампы из термостойкого кварца позволяет поддерживать весьма высокую температуру волоска, так что по цветовому составу свет получается существенно ближе к естественному дневному.
Более высокая температура означает еще и то, что лампа имеет большую световую отдачу на единицу поглощаемой энергии. С другой стороны, вольфрамовый волосок из-за этого испаряется быстрее, и чтобы этому противостоять, галогеновые лампочки заполняют теперь не только инертным газом, но и парами брома или йода. Галоген вступает в соединения с парами вольфрама, а при контакте с раскаленным волоском эти соединения снова распадаются и вольфрам оседает на том же волоске.
В лампах HID (High Intensity Discharge, газоразрядные высокой интенсивности, в просторечии «ксенон») вообще нет никаких волосков. Вместо них свет излучает высоковольтная дуга в атмосфере инертных газов. Для зажигания этих ламп требуется высокое напряжение и высокий стартовый ток (когда лампа уже заработала, она потребляет гораздо меньше энергии и выдает больше света, чем обычная галогеновая). Кроме того, электрическая дуга выдает более равномерный световой поток, который проще фокусировать.
Есть тут, правда, и один недостаток — на то, чтобы лампа зажглась, прогрелась и начала выдавать полную мощность, требуется несколько секунд. Поэтому в некоторых машинах лампы HID используют для ближнего света, а для дальнего оставляют обычные галогеновые. Альтернативный вариант — шторка с механическим приводом, тогда одна ксеноновая лампа может иметь распределение света под оба режима.
Тем не менее, будущее автомобильного света специалисты отдают полупроводниковым технологиям — светодиодам. Поскольку до сих пор не существует никаких стандартов на унифицированную светодиодную сборку, автопроизводителям приходится для каждой модели изготавливать оригинальную конструкцию, а это недешево. Но благодаря явным преимуществам (малый вес, стойкость к вибрациям, большие сроки эксплуатации, сверхнизкое потребление энергии) светодиоды, вероятно, вскоре вытеснят с рынка системы HID.
Плюсы ясны, а где же минусы?
Казалось бы, столько пользы и положительных моментов, но, как говорится, и на солнце есть пятна…
Среди недостатков следует выделить:
- Посредственную очистку. Порой струя практически ничего не решает и не справляется с поставленной задачей;
- На скорости струя летит во все стороны, особенно в случае с веерными вариантами;
- Расход омывающей жидкости. При наличии данной опции расход «омывайки» увеличивается в разы;
- Зимние проблемы. Нередко зимой возникают проблемы с форсунками, они могут замерзать, причем не только они, но стекло фар. Да, есть зимние жидкости, но в большие морозы бывает всякое. Кроме того, телескопы могут заедать при слишком низких температурах, поэтому некоторые автовладельцы отключают данную опцию на зиму.
РАЗДЕЛ 1. Корпус и конструкция передних фар
Корпус фары — это та часть оптики внутри которой установлена лампа освещения. Как вы все знаете на современном рынке автомашин существует множественное число разных ламп освещения, начиная от обычной галогеновой лампы и заканчивая теми же новыми лазерными технологиями. От того, какая лампа освещения стоит в передней оптике автомобиля зависит и сама конструкция корпуса этой автофары.
Отражатель
Фары с отражателями, что установливаются сегодня в корпусе передней оптики, являются самыми распространёнными у всех автопромышленников. Хотя в настоящий момент наблюдается определенная тенденция по замещению фар с отражателями на линзованную оптику. Мы не собираемся утомлять вас друзья научной философией и объяснять в данной статье о том, как работает автомобильная фара. Если сказать об этом кратко, то все выглядит так,- внутри фары рядом с отражателем, как правило, установлена лампа освещения свет которой излучает сама фара и который отражается от хромированной краски, что нанесена на этот отражатель. В итоге свет лампы при отражении от хромированной поверхности выходит конкретно на дорогу.
Как правило, галогеновая автомобильная лампа имеет также небольшой участок хрома или защитного покрытия из другого материала (как правило, размещен на переднем торце лампы), который препятствует попаданию прямых лучей света в глаза водителей встречного транспорта. В итоге данная лампа излучает свет не сразу на дорогу, а попадает сначала в отражатель, который рассеивая лучи света отправляет их непосредственно на дорогу.
Недавно нам казалось, что этот тип ламп в скором времени по-просту исчезнет из автопромышленности. Особенно после того, как на свет появились ксеноновые лампы. Но что в итоге, на сегодняшний момент эти галогеновые лампы для автомобилей по-прежнему являются и остаются самыми распространенными во всем автомобильном мире.
Линза
Автомобильные фары с линзами внутри в настоящий момент, постепенно отбирают популярность у оптики с отражателями. Напомним нашим читателям, что впервые эти линзованные фары появились и устанавливались на дорогих люксовых автомобилях. Но затем, по мере удешевления технологий, такая передняя линзованная оптика стала появляться и на обычных недорогих автотранспортных средствах.
Что же из себя представляет линзованная передняя оптика? Отвечаем. Как правило, этот вид фар вместо отражателей используют в себе так называемые линзы (это специальная оптическая колба, которая не отражает излучаемый свет от ламп на дорогу, а по сути, она с помощью проекции передает освещение на дорогу).
В настоящий момент существует уже огромное количество различных типов линз и конструкций таких линзованных передних фар.
Но смысл работы данной линзованной оптики у всех одинаков. Что же такое линза в передней фаре и как она работает?
Дело в следующем, что эти лизнованные фары формируют пучок света для освещения дороги совершенно по-другому (т.е. по другому принципу) в отличие от обычной оптики с отражателями.
Например, внутри этой линзы тоже имеется отражатель с хромированным покрытием, который отражает свет от лампы. Но в отличие от обычного отражателя структура линзованного отражателя создана именно таким образом, чтобы не направлять сам свет на дорогу, а собирать его в специальном месте внутри фары в пучок на специальной металлической пластине. Вот эта пластина по сути и собирает свет в единый пучок а далее перенаправляет его в линзу, которая в свою очередь и проецирует уже направленный пучок света непосредственно на дорогу.
Как правило, такая линзовання фара обеспечивает превосходную светоотдачу с резкой линией среза и сфокусированным пучком света.
ВОПРОСЫ
Какие бывают типы фар?
Помимо выбора между рефлекторными или проекционными фарами, вы также получаете выбор из четырех различных технологий для фактического создания света. К ним относятся стандартные галогенные лампы, светодиодные блоки, HID / ксеноновые фары и системы лазерного излучения.
Как долго служат галогенные лампы?
Средняя галогенная лампа прослужит около 2000 часов. Это означает, что вы замените его раньше, чем альтернативный вариант. С другой стороны, галогенные автомобильные фары заменить довольно дешево.
Светодиодные фары лучше HID?
Обе конфигурации дают очень яркие световые лучи, что делает их идеальными для вождения в ночное время. Однако светодиодные автомобильные фары не нагреваются и не потребляют столько энергии. Они также не дают синего свечения, что может оттолкнуть некоторых автомобилистов. Наконец, светодиодные фонари сразу достигают полной яркости, в то время как HID-лампы постепенно становятся ярче в течение первых нескольких секунд, пока полностью не возбудят газ внутри ламп.
Можно ли поставить светодиодные лампочки в штатные фары?
Если вы заменяете галогенные фары на светодиодные, это должно быть нормально. Однако, если вы пытаетесь перейти с HID на LED, это немного сложнее. Базовые системы несовместимы, и вам, скорее всего, придется заменить весь блок передних фонарей в процессе.
Какие фары лучше всего подходят для ночной езды?
Есть довольно много поставщиков услуг освещения, как OEM, так и послепродажного обслуживания. Стоит упомянуть лишь несколько имен: Luma, Anzo, Vision и Philips. Если вы собираетесь много ездить поздно ночью, рекомендуется использовать светодиоды, а HID — если у вас есть деньги, которые можно потратить.
Линзованная оптика: что это, как работает и в чем ее преимущества?
Линзованная оптика — сегодня довольно часто встречается подобное словосочетание. Фары с линзами имеют большую популярность за счет своей эффективности, а также красивого и стильного внешнего вида.
Как и большинство новинок, линзованная оптика изначально была доступна только для дорогих авто бизнес- и премиум-класса. Однако сегодня линзы встречаются на многих авто, к тому же при желании любой может установить линзы на свой автомобиль. В паре с яркими ксеноновыми лампами или мощными светодиодами линзы обеспечивают прекрасный свет, который не идет ни в какое сравнение с обычными фарами на отражателях.
Конструктивные особенности линзовой оптики позволяют ей генерировать более мощный пучок света, который способен освещать гораздо больший участок дороги, нежели обыкновенные фары с отражателями. Световой пучок лучше сфокусирован и светит именно туда, куда его направили, не рассеиваясь по всей дороге.
Из каких элементов состоит матричная фара
Поскольку в основе матричной фары лежат светодиоды, они являются неотъемлемой частью конструкции. Использование данного вида источников света позволяет улучшить качество и яркость освещения. В список конструктивных элементов фары входят:
- светодиодные матрицы ближнего и дальнего света;
- модули ДХО, указателей поворота и габаритов;
- пластмассовый корпус с прозрачным рассеивателем;
- вентилятор охлаждения;
- декоративная решетка;
- блок управления.
Конструктивные особенности матричной оптики Поскольку система управляется автоматически, блок управления обменивается сигналами с другими модулями автомобиля, а также датчиками движения и видеокамерой.
В чем разница между проекторным и отражающим светом?
Как следует из названия, рефлекторные фары полагаются на отражение для усиления своей мощности. Это достигается за счет помещения лампы в нишу, облицованную светоотражающим материалом. Раньше металл использовался вместе с герметичными балками. Это делало их замену весьма неудобной. К счастью, в настоящее время корпус облицован зеркалами, а колба отделена от чаши, что позволяет заменять ее отдельно и дешевле.
В проекционных фарах используется та же система, но с добавлением дополнительной линзы, которая помогает фокусировать световой луч, увеличивая яркость. Поскольку они более дорогие, они изначально предназначались для роскошных автомобилей, но в наши дни они становятся все более обычным явлением. Так какой из них лучше? Лучи проектора ярче и с меньшей вероятностью будут слепить встречный транспорт, и в нем можно использовать ксеноновые лампы HID вместо старых галогенных ламп — определенно модернизация по сравнению с типами отражателей.
Где находятся регулировочные винты света фар
Еще до начала работы необходимо четко знать, где находятся регулировочные винты. Они есть на всех типах фар, но месторасположение может различаться, как и конструкция
Тут важно помнить следующее:
- Проще всего изучить информацию в инструкции по эксплуатации автомобиля или найти данные на тематических форумах, посвященных определенной модели авто. Нередко можно найти видео, где все показывается наглядно, что существенно упрощает процесс.
- На каждой фаре есть два винта. Первый регулирует световой поток в вертикальной плоскости, второй – в горизонтальной. Поэтому можно настроить не только высоту света, но и при необходимости смещать его относительно дорожного полотна.
- Система регулировки также может отличаться. Вращать винты можно вручную, с помощью плоской или крестообразной отвертки, шестигранником или даже звездочкой. Стоит заранее уточнить этот момент, чтобы нужный инструмент был под рукой. Не стоит вращать пластиковые детали не подходящим приспособлением, они очень легко повреждаются.
В некоторых моделях авто регулировка осуществляется через специальные отверстия в передней облицовке. В этом случае главное – подобрать отвертку или другой ключ подходящей длины.
Иногда фары регулируются через специальное отверстие над фарой.
Что такое ретрофит фар?
Понятие «ретрофит» зародилось в США и подразумевает модернизацию или доработку старых фар до соответствия современным качественным стандартам, а также обновление их внешнего вида. Иными словами, это тюнинг старой системы освещения. Как правило, выполнение процедуры ретрофита фар подразумевает установку биксенона и светодиодных элементов.
Плюсы установки ретрофита
Установка ретрофита фар поднимает их качественные и визуальные характеристики на новый современный уровень. Среди плюсов можно выделить:
- комфортное и качественное освещение, которое позволяет вести автомобиль на более высокой скорости, более безопасное движение, более низкая вероятность попадания в ДТП;
- отлично освещают дорожное полотно, края дороги, съезды и обочины, что увеличивает безопасность движения пешеходов, животных и т.д.;
- ретрофитовые фары равномерно освещают дорогу, не ослепляют встречных водителей;
- свет яркий и качественный, так как максимально приближен к дневному;
- более современный и стильный внешний вид фар.
Минусы ретрофита фар
- Учитывая необходимость покупки биксенонвых модулей и ксеноновых ламп, конечная цена такого тюнинга может быть высока.
- За такой доработкой следует обращаться только к профессионалам. Поскольку выполнение процедуры требует разборки фар, после завершения работ могут возникнуть проблемы с их герметичностью: запотевание, потускнение, появление налета пыли или грязи. В связи с перечисленными последствиями, не стоит доверять установку ретрофита любителям.
Фотометрические термины и определения для фар
Дальность света фары
Это расстояние, на котором световой луч продолжает обеспечивать заданную освещенность, в большинстве случаев — 1 люкс, с правой стороны дороги (при правостороннем движении).
Геометрическая дальность фары
Это расстояние до горизонтальной части границы света и тени на дорожном покрытии. Угол наклона фар ближнего света порядка 1% или 10 см на 10 м является результатом геометрического диапазона, равного 100-кратной высоте установки фар (замеряется между центром отражателя и дорожным покрытием).
Визуальная дальность
Визуальная дальность — это расстояние, на котором все еще видны объекты (автомобили, предметы и т.п.) в пределах яркостного распределения зрительного поля человека.
Ввиду того, что визуальный диапазон подвержен влиянию таких факторов, как форма, размер и отражательная способность предмета, тип дорожного покрытия, конструкция фар и их чистота, а также физиологические условия состояния глаз водителя, не имеется возможности установить визуальный диапазон путем использования точных числовых средств. При крайне неблагоприятных условиях (при левостороннем движении, с левой стороны мокрой дороги) визуальная дальность может снизиться до 20 м и ниже. При оптимальных условиях она может увеличиться до более чем 100 м (при правостороннем движении, с правой стороны дороги).
Дискомфортный свет
Представляет собой количественное сокращение степени визуальной оценки, которое происходит в ответ на источники света, создающие ослепляющий эффект. Примером может быть уменьшение дальности видимости при взаимном приближении двух автомобилей.
Дискомфортный свет возникает, когда источник ослепления вызывает дискомфорт, однако без фактического уменьшения характеристики визуальной оценки. Дискомфортный свет оценивается по шкале, определяющей разные уровни комфорта и дискомфорта.
Варианты конструкций механизмов для регулировки фар
Во всех вариантах используется регулирующий механизм для вертикальной регулировки отражателя фары (конструкция корпуса) (рис. «Автоматическая вертикальная регулировка фар» ). Приборы ручного управления имеют переключатель, приводимый в действие водителем (рис. «Ручная вертикальная регулировка фар» ), в то время как автоматические регуляторы получают сведения от датчиков расположения оси и степени сжатия подвески, после чего передают соответствующие сигналы к средствам регулирования.
Гидромеханические системы регулировки фар
Гидромеханические системы работают по принципу перетекания жидкости по соединительным шлангам между ручным переключателем (или датчиком уровня) и элементами регулирования. Степень регулировки соответствует количеству перетекающей жидкости.
Вакуумные системы регулировки фар
У вакуумных систем ручной переключатель (или датчик уровня) регулирует вакуум от впускного трубопровода и передает его к устройствам регулировки, таким образом, получается переменная степень регулировки.
Электрические системы регулировки фар
В электрических системах в качестве регулирующих механизмов используется электрические редукторные двигатели. Управление ими осуществляется или с помощью соответствующих переключателей в автомобиле, или от осевых датчиков.
Литература
- Джеррард А., Бёрч Дж. М. Введение в матричную оптику. М. Мир 1978г. 341с.
- Салех Б.Е.А., Тейх М.К. Оптика и фотоника. Принципы и применения. Пер. с англ.: Учебное пособие. В 2 т. Долгопрудный: Интеллект, 2012. — 1544 с. — Раздел 1.4, стр. 50-68.
Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах, отражения света от зеркально-отражающих поверхностей и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.
Основное понятие геометрической оптики — это световой луч. При этом подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.
Законы геометрической оптики являются частным предельным случаем более общих законов волновой оптики, в предельном случае стремления длины световых волн к нулю. Так как свет физически является распространением электромагнитной волны, происходит интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т. е. наблюдается дифракция. Интерференция и дифракция находятся вне предмета изучения оптических свойств оптических систем средствами геометрической оптики. Однако, в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь дифракционной расходимостью пучка света и считать, что лучи света распространяются по отрезкам прямых, до преломления или отражения.
Геометрическая оптика неполно описывает оптические явления, являясь упрощением более общей волновой оптической теории. Но широко используется, например, при расчёте оптических систем, так как её законы математически более просты по сравнению с обобщающими волновыми законами, что существенно снижает математические трудности при анализе и синтезе оптических систем. Приблизительная аналогия между геометрической и волновой оптиками — как между ньютоновской механикой и общей теории относительности.
Помимо пренебрежения волновыми эффектами в геометрической оптике также пренебрегают квантовыми явлениями. В геометрической оптике скорость распространения света считается бесконечной (поэтому динамическая физическая задача превращается в чисто геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет математической трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с влиянием прохождения света через оптические среды, например, изменения показателя преломления среды под воздействием мощного излучения. Эти эффекты, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей (принцип суперпозиции).